跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 16:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱奕元
研究生(外文):Yi-yuan Chiu
論文名稱:使用啾聲信號之三倍頻發射相位法於諧波影像偵測
論文名稱(外文):Harmonic Detection with Chirp Excitation in Third Harmonic Transmit Phasing
指導教授:沈哲州
指導教授(外文):Che-chou Shen
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:77
中文關鍵詞:編碼發射啾聲信號超音波對比劑諧波影像脈衝壓縮三倍頻發射相位法
外文關鍵詞:Coded excitationChirp waveformUltrasonic contrast agentsHarmonic imagingPulse compressionThird harmonic transmit phasing
相關次數:
  • 被引用被引用:5
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
三倍頻發射相位法可藉由外加一個可改變相位的三倍頻信號而產生頻率和及頻率差的諧波成分來抑制與增強組織諧波信號以改善諧波影像品質。對於三倍頻發射相位法,使用啾聲發射信號與傳統的高斯信號相比能夠在相同發射聲壓下提供更好的訊雜比(SNR, signal-to-noise ratio)或在較低聲壓下提供相同的SNR,因此可以降低對比劑氣泡破裂的可能性,然而若要有效的抑制與增強組織諧波信號,需要在組織信號的二次諧波頻帶中產生可以互相偶合相消或相加的頻率和差成分,因此必須將啾聲信號特別設計才能實現三倍頻發射相位法的效用。
在本研究中,我們提出了一個適合三倍頻發射相位法的啾聲信號設計波形,稱為DBCS(the different-bandwidth chirp signal),當使用DBCS發射波形時,頻率和與頻率差成分產生的特性皆與啾聲信號相似且分佈一致,故可以有效的抑制組織諧波並提升對比劑諧波的SNR,造成對比劑與組織的影像對比度(CTR, contrast-to-tissue ratio)提升,此外DBCS發射波形也能針對組織信號進行增強而提升組織諧波SNR,並且可以在脈衝壓縮之後得到與高斯信號相似的脈衝長度以維持影像解析度。本研究DBCS發射波形的設計原理亦可應用在其他仰賴多頻率發射而產生差頻諧波的成像技術。
我們的模擬與實驗研究結果顯示,與高斯波形於三倍頻發射相位法相比,傳統啾聲波形設計SBCS(the same-bandwidth chirp signal)雖然也能提升諧波成像的訊雜比,但因其產生的頻率差成分為單頻信號,故對組織諧波的增強與抑制效果均較差,且其脈衝壓縮結果亦不理想。啾聲波形改用DBCS設計之後即可有效提升對比劑諧波的SNR與CTR,另外在組織諧波增強方面也可以改善組織諧波SNR,然而DBCS的寬頻特性會受限於探頭頻寬以及組織衰退因素的影響,使得組織諧波抑制與增強的程度低於理想值。
The method of third harmonic (3f0) transmit phasing utilizes an additional 3f0 transmit signal to provide mutual cancellation and addition between the frequency-sum component and the frequency-difference component of tissue harmonic signal. Chirp excitation can further improve the signal-to-noise ratio (SNR) in harmonic imaging without requiring an excessive transmit pressure and thus reduce potential bubble destruction. However, for effective suppression and enhancement of tissue harmonic signal in 3f0 transmit phasing, the 3f0 chirp waveform has to be carefully designed for the generation of spectrally matched cancellation and addition pairs over the entire second harmonic band. In this study, we proposed a chirp waveform suitable for the method of 3f0 transmit phasing, the different-bandwidth chirp signal (DBCS). With the DBCS waveform, the frequency-difference component of tissue harmonic signal becomes a chirp signal similar to its frequency-sum counterpart. Thus, the combination of the DBCS waveform with the 3f0 transmit phasing can markedly suppress the tissue harmonic amplitude for contrast-to-tissue ratio (CTR) improvement together with effective SNR increase of contrast harmonic signal. Furthermore, the DBCS waveform also can enhance the tissue harmonic amplitude for SNR improvement of tissue harmonic. Our results indicate that, as compared to the conventional Gaussian pulse, the DBCS waveform can provide 6-dB improvement of contrast harmonic SNR in 3f0 transmit phasing with a CTR increase of 3-dB. In addition, the DBCS waveform can provide not only marked 8-dB improvement of harmonic SNR but also comparable pulse length to conventional transmit scheme. Nevertheless, the limitation of available transmit bandwidth and the frequency-dependent attenuation can degrade the performance of the DBCS waveform in tissue suppression and enhancement. The design of the DBCS waveform is also applicable to other multi-frequency imaging techniques which rely on the harmonic generation at the difference frequency.
中文摘要 I
Abstract III
致謝 V
圖目錄 X
表目錄 XIII
第一章 緒論 1
1-1 醫用超音波影像基本原理 1
1-2 超音波諧波影像 4
1-2-1 超音波諧波信號 4
1-2-2 組織諧波影像 6
1-2-3 對比劑諧波影像 8
1-2-4 組織諧波信號的增強與抑制相關研究 11
1-3 三倍頻發射相位法原理 15
1-4 研究動機、目標與論文架構 18
第二章 啾聲信號於三倍頻發射相位法 20
2-1 啾聲信號原理與特性 20
2-2 啾聲信號與高斯信號之頻譜偶合比較 21
2-3 適合三倍頻相位法的啾聲信號波形設計 24
2-4 啾聲信號之脈衝壓縮 26
2-5 脈衝反相技術 28
第三章 研究方法 30
3-1 發射波形組合 30
3-2 聲場模擬 31
3-2-1 組織聲場模擬 31
3-2-2 對比劑聲場模擬 34
3-3 實驗架構 35
3-3-1 諧波量測與B-mode對比劑諧波影像 35
3-4 對比劑微氣泡破裂程度評估 38
第四章 研究結果 41
4-1 諧波信號模擬 41
4-1-1 組織諧波抑制與CTR提升 41
4-1-2 不同壓縮比之啾聲信號比較 44
4-1-3 組織衰退因素啾聲波形組織諧波的影響 47
4-1-4 探頭發射頻寬對啾聲波形組織諧波抑制的影響 52
4-2 諧波信號量測 53
4-2-1 組織諧波信號量測 53
4-2-2 組織諧波信號之脈衝壓縮 54
4-3 B-mode諧波影像 56
4-4 對比劑微氣泡破裂程度探討 58
第五章 討論與結論 65
5-1 討論與結論 65
5-2 未來工作 68
參考文獻 72
[1] F. Tranquart, N. Grenier, V. Eder and L. Pourcelot, “Clinical use of ultrasound tissue harmonic imaging,” Ultrasound in Med. & Biol., vol.25, no. 6, pp. 889–894, 1999.
[2] C. A. Cain, “Ultrasonic reflection mode imaging of the nonlinear parameter B/A: I. A theoretical basis,” J. Acoust. Soc. Amer., vol. 80, no. 1, pp. 28-32, July 1986.
[3] R. T. Beyer and S. V. Letcher, Nonlinear acoustics. New York: Academic, 1969, pp. 202-230.
[4] M. E. Haran and B. D. Cook, “Distortion of finite amplitude ultrasound in lossy media,” J. Acoust. Soc. Amer., vol. 73, no. 3, pp. 774-779, March 1983.
[5] P. C. Li and C. C. Shen, “Effects of Transmit Focusing on Finite Amplitude Distortion Based Second Harmonic Generation,” Ultrasonic Imaging, vol. 21, pp. 243-258, 1999.
[6] T. Christopher ,”Finite Amplitude Distortion-Based Inhomogeneous Pulse Echo Ultrasonic Imaging, ” IEEE Trans. Ultrason., Ferrroelec., Freq. Control., vol. 44 ,pp. 125–139, 1997.
[7] T. Christopher ,”Experimental Investigation of Finite Amplitude Distortion-Based, Second Harmonic Pulse Echo Ultrasonic Imaging ,” IEEE Trans. Ultrason., Ferrroelec., Freq. Control., vol. 45 ,pp. 158–162, 1998.
[8] P. H. Chang, K. K. Shung, S. J. Wu et al., “Second harmonic imaging and harmonic Doppler measurements with Albunex��,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 42, no. 6, pp. 1020–1027, Nov. 1995.
[9] N. de Jong, “Improvements in ultrasound contrast agents,” IEEE Eng. Med. Biol., vol. 15, no. 6, pp. 72–82, 1996.
[10] W. T. Shi and F. Forsberg, “Ultrasonic characterization of the nonlinear properties of contrast microbubbles,” Ultrasound Med. Biol., vol.26, no. 1, pp. 93–104, 2000.
[11] F. Forsberg, W. T. Shi and B. B. Goldberg, “Subharmonic imaging of contrast agent,” Ultrasonics, vol.38, no. 1, pp. 93–98, 2000.
[12] D. E. Goertz, A. Needles, R. Karshafian, A. S. Brown, P. N. Burns, and F. Stuart Foster, “High frequency nonlinear B-scan imaging of microbubble contrast agents,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 52, no. 1, pp. 65–78, Jan. 2005.
[13] M. B. Nielsen and N. Bang, “Contrast enhanced ultrasound in liver imaging,” Eur. J. Radiol., vol.51, pp. S3–S8, 2004.
[14] P. C. Li and C. C. Shen, “Effects of Transmit Focusing on Finite Amplitude Distortion Based Second Harmonic Generation,” Ultrasonic Imaging, vol.21, pp. 243–258, 1999.
[15] J. Y. Lu and J. F. Greenleaf, “Ultrasonic nondiffracting transducer for medical imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 37, no. 2, pp. 438–447, 1990.
[16] Jerome M. G. Borsboom, C. T. Chin and N. de Jong, “Nonlinear Coded Excitation Method for Ultrasound Contrast Imaging,” Ultrasound in Med. & Biol., vol. 29, No. 2, pp. 277–284, 2003.
[17] Jerome M. G. Borsboom, C. T. Chin, A. Bouakaz, M. Versluis, and N. de Jong, “Harmonic Chirp Imaging Method for Ultrasound Contrast Agent,” IEEE Transactions. Ultrason., Ferroelec., Freq. Control., vol. 52, no. 2, pp. 241–249, 2005.
[18] S. G. Kanzler and M. L. Oelze, “Improved Scatterer Size Estimation Using Backscatter Coefficient Measurements with Coded Excitation and Pulse Compression,” J. Acoustic Soc. Am., Vol.123, No. 6, 2008.
[19] M. H. Pedersen, K. L. Gammelmark, and J. A. Jensen, “In-Vivo Evaluation of Convex Array Synthetic Aperture Imaging,” Ultrasound in Med. & Biol., vol.33, no. 1, pp. 37–47, 2007.
[20] O. Couture, J. F. Aubry, G. Montaldo, M. Tanter and M. Fink, “Suppression of tissue harmonics for pulse-inversion contrast imaging using time reversal,” Phys. Med. Biol., vol.53, pp. 5469–5480, 2008.
[21] T. Christopher, “Source Prebiasing for Improved Second Harmonic Bubble-Response Imaging, ” IEEE Trans. Ultrason., Ferrroelec., Freq. Control., vol. 46 ,pp. 556–563, 1999.
[22] 王裕鈞,「使用三倍頻發射相位法於波組織諧波信號分析」,國立台灣科技大學碩士論文
[23] C. C. Shen, Y. C. Wang and Y. C. Hsieh, “Third harmonic transmit phasing for tissue harmonic generation,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, no. 7, pp. 1370–1381, July 2007.
[24] C. C. Shen, C. K. Yeh, W. S. Chen and H. W. Wang, “Ultrasonic harmonic contrast detection using third harmonic transmit phasing,” Phys. Med. Biol., vol. 53, pp. 6179–6194, 2008.
[25] 王鴻偉,「使用三倍頻發射相位法於對比劑諧波影像」,國立台灣科技大學碩士論文
[26] T. Misaridis and J. A. Jensen, “Use of modulated excitation signals in medical ultrasound. Part II: design and performance for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, pp. 192-207, 2005.
[27] C. C. Shen and P. C. Li, “Harmonic leakage and image quality degradation in tissue harmonic imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 48, no. 3, pp. 728–736, May 2001.
[28] Y. Li and J. A. Zagzebski, “A Frequency Domain Model for Generating B-Mode Images with Array Transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, no. 3, pp. 690-698, May. 1999.
[29] P. C. Li, C. C. Shen and S. W. Huang, “Waveform design for ultrasonic pulse-inversion fundamental imaging,” Ultrason Imaging, vol. 29, pp. 73-86, 2007.
[30] K. Chetty, J. V. Hajnal and R. J. Eckersley, “Investigating the nonlinear microbubble response to chirp encoded, multipulse sequences,” Ultrasound in Med. & Bio.l, vol. 32, no. 12, pp. 1887–1895, 2006.
[31] C. C. Church, “The effects of an elastic solid surface layer on the radial pulsation of gas bubbles,” J. Acoust. Soc. Amer., vol. 97, no. 3, pp. 1510–1521, March 1995.
[32] S. van der Meer, M. Versluis, D. Lohse, C.T. Chin, A. Bouakaz, and N. de Jong, “The resonance frequency of SonoVue™ as observed by high-speed optical imaging,” Proc. IEEE Ultrason. Symp., pp. 343–345, 2004.
[33] C. K. Yeh, S. Y. Su, and W. S. Chen, “Destruction threshold parameters estimation for ultrasonic contrast agents,” J. Med. Biol. Eng., vol. 25, pp. 167–171, 2005.
[34] C. C. Church, “Frequency, pulse length, and the mechanical index,” Acoust. Res. Lett. Online, vol. 6, no. 3, pp.162–168, 2005.
[35] US Patent 6899679,“Ultrasonic diagnosis apparatus and ultrasound imaging method,”2005.
[36] S. Chen, R. R. Kinnick, J. F. Greenleaf and M. Fatemi, “Harmonic vibro-acoustography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, pp. 1346-1351, 2007.
[37] C. K. Yeh, S. Y. Su, C. C. Shen and M. L. Li,“Dual high frequency difference excitation for contrast detection,”IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, pp. 2164–2176, 2008
[38] D. Cathignol, J. Y. Chapelon, V. L. Newhouse, and P. M. Shankar, “Bubble sizing with high spatial resolution,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 37, no. 1, pp. 30–37, 1990.
[39] J. Buckey, D. Knaus, D. Alvarenga, M. Kenton and P. Magari, “Dual-frequency ultrasound for detecting and sizing bubbles,” Acta Astron., vol. 56, pp. 1041-1047, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊