跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 14:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧正添
研究生(外文):Cheng-tien Lu
論文名稱:熱處理製程對FeCoNiCrCu0.5塊狀高熵合金在不同環境腐蝕特性之研究
論文名稱(外文):Corrosion Behavior of FeCoNiCrCu0.5 Bulky High Entropy Alloy with Heat-treatment Processes in Different Environments
指導教授:蔡顯榮蔡顯榮引用關係
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:76
中文關鍵詞:高熵合金電化學熱處理鑄造動態極化曲線
外文關鍵詞:High entropy alloyElectrochemicalheat-treatmentcastingpotentiodynamic polarization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討FeCoNiCrCu0.5塊狀高熵合金時效熱處理製程條件之不同環境腐蝕行為。研究結果顯示鑄造狀態的高熵合金經均質化處理,再以時效熱處理製程(350℃, 500℃, 650℃, 800℃及950℃)處理試片,在3.5 wt% NaCl、1N NaOH 和 1N H2SO4水溶液下,而與304L不�袗�於3.5 wt% NaCl、1N NaOH 和 1N H2SO4水溶液極化曲線比較;於3.5 wt% NaCl水溶液之極化數據比較中,304L不�袗�得到最低之腐蝕速率、FeCoNiCrCu0.5高熵合金具有最高之腐蝕速率;1N NaOH水溶液之極化數據比較中,304L不�袗�得到最低之腐蝕速率、FeCoNiCrCu0.5高熵合金具有最高之腐蝕速率;於1N H2SO4水溶液之極化數據比較中,304L不�袗�得到最低之腐蝕速率、FeCoNiCrCu0.5高熵合金得到最高之腐蝕速率,其中又以FeCoNiCrCu0.5高熵合金經由650℃時效熱處理製程之FeCoNiCrCu0.5塊狀高熵合金具有較高之腐蝕速率,亦即為具有較差之抗蝕性,研判為FeCoNiCrCu0.5高熵合金中富含銅相,而造成偏析的現象,反而造成腐蝕速率加快,抗蝕性變差。
The corrosion behavior of FeCoNiCrCu0.5 high-entropy alloys under various heat-treatment processes and corrosion environments was studied. The heat treatment of the as-cast alloy specimens was carried out at 1050℃ with 1 hour holding time. After water quenching serial heat-treatments at 350℃, 500℃, 650℃, 800℃ and 950℃ with 24 hours holding time were carried out. The corrosion resistance of the specimens has been evaluated by potentiodynamic polarization of immersion tests. The specimen treated at 950℃ exhibits serious corrosion in NaOH and H2SO4 solution due to significant segregation of Cu-riched phase. Because of the active sensitivity zone of appreciable potential difference, the high-entropy alloy was preferentially attacked along the Cu-riched phase.
摘  要 I
Abstract ……………………………………………………………….II
誌  謝…………………………………………................................ ..Ⅲ
第一章 前言 1
第二章 文獻回顧 3
2.1 高熵合金 3
2.1.1 高熵合金的發展回顧 3
2.1.2 高熵合金的定義與應用 4
2.1.3 高熵合金的研究 4
2.1.3.1 多元高熵合金晶體結構及硬度之研究 5
2.1.3.2 以 FCC 及BCC 元素為劃分配置等莫耳多元合金系統之研究 7
2.1.3.3 Cu、Al、Cr、Fe、Co、Ni、Si和Ti高熵合金抗蝕性之研究 9
2.1.3.4 FeCoNiCrCux高熵合金抗蝕性之研究 12
2.2 材料腐蝕 14
2.2.1 腐蝕之發生原因 14
2.2.2 腐蝕之型態 14
2.2.2.1 均勻腐蝕 15
2.2.2.2 穿孔腐蝕 15
2.2.2.3 加凡尼腐蝕 16
2.2.3 電化學腐蝕 16
2.2.3.1 電化學測試 17
2.2.3.2 電化學極化 17
2.2.3.3 混合電位 22
2.2.3.4 腐蝕速率 24
2.2.3.5 鈍化與鈍化膜 25
2.2.3.6 腐蝕速率之量測 26
2.2.4 化學腐蝕 27
第三章 實驗方法 28
3.1 實驗流程 28
3.2 基材製備 29
3.3 鑄態基材熱處理 29
3.4 試片研磨 29
3.5 X-ray繞射分析 30
3.6 材料顯微組織觀察及成份分析 30
3.7 電化學實驗 31
3.7.1 恆電位儀實驗設備及裝置 31
3.7.2 動電位極化曲線(Potentiodynamic)量測 31
3.8 浸泡試驗 32
3.9 硬度量測 32
第四章 實驗結果與討論 ………..33
4.1 FeCoNiCrCu0.5高熵合金顯微組織及成份分析 33
4.1.1 鑄態基材及時效熱處理高熵合金之金相組織(OM) 33
4.1.2 鑄態基材之SEM顯微組織結構及成份分析 34
4.1.3 FeCoNiCrCu0.5鑄態基材及時效熱處理後之SEM分析 35
4.1.4 FeCoNiCrCu0.5鑄態基材及時效熱處理後之硬度值 37
4.2 X-ray 繞射 37
4.3 電化學分析 38
4.3.1 3.5% NaCl水溶液環境之極化曲線圖 38
4.3.2 1N H2SO4動態極化曲線圖 41
4.3.3 1N NaOH動態極化曲線圖 43
4.3.4 FeCoNiCrCu0.5高熵合金之腐蝕行為 45
4.3.4.1 鑄態之FeCoNiCrCu0.5高熵合金 45
4.3.4.2 350℃時效熱處理之FeCoNiCrCu0.5高熵合金 48
4.3.4.3 500℃時效熱處理之FeCoNiCrCu0.5高熵合金 51
4.3.4.4 650℃時效熱處理之FeCoNiCrCu0.5高熵合金 54
4.3.4.5 800℃時效熱處理之FeCoNiCrCu0.5高熵合金 57
4.3.4.6 950℃時效熱處理之FeCoNiCrCu0.5高熵合金 60
4.5 浸泡腐蝕 63
第五章 結論 71
參考文獻 73
[1] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H.Tsau, and S. Y. Chang, “Nanostructured high-entropy alloys with multi-principal elements -- Novel alloy design concepts and outcomes”, Advance Engineering Materials, vol.5 (2004), pp. 299-303.
[2] P. K. Huang, J. W. Yeh, T. T. Shun, and S . K. Chen, “Multi-principal element alloys with improved oxidation and wear resistance for thermal spray coating”, Advance Engineering Materials, vol.6 (2004), pp. 74-78.
[3] Hyo S. Lee, Kyung Y. Jeon, Hee Y. Kim, and Soon H. Hong, “Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications”, Journal of Materials Science, Vol.35 (2008), pp. 6231-6236.
[4] V. Medeleiene and A. Kosenko, “Structural and functional properties of electrodeposited copper metal matrix composite coating with inclusions of WC”, Materials Science, Vol. 14 (2008), pp. 29-33.
[5] 葉均蔚,陳凱瑞,“高熵合金”,科學發展,377期,pp.16-21,2004。
[6] 葉均蔚, “具奈米結構之多元高熵合金系統”,知識創新,40期,2003。
[7] 許雲翔,“以 FCC 及BCC 元素為劃分配置等莫耳多元合金系統之研究”,國立清華大學材料科學工程研究所碩士論文,2000,p. 123-130。
[8] 洪育德,“ Cu、Al、Cr、Fe、Co、Ni、Si和Ti高熵合金抗蝕性之研究”,國立清華大學材料科學工程研究所碩士論文,2002,pp. 98-99。
[9] 許佑睿,“FeCoNiCrCux 高熵合金之抗蝕性研究”,國立海洋大學材料工程研究所碩士論文,2004,pp. 104-106。
[10] Y. J. Hsu, W. C. Chiang, and J. K. Wu, “Corrosion behavior of
FeCoNiCrCux high entropy alloys in 3.5% NaCl solution”,
Materials Chemistry and Physics, Vol. 92 (2005), pp. 112-117.
[11] M. C. Baykul, “Preparation of shape gold tips for STM by using electro-chemical etching method”, Materials Science and Engineer B, Vol. 74 (2000) , pp. 229-233.
[12] A. V. Benedetti, P. T. A. Sumodjo, K. Nobe, P. L. Cabot, and W. G. Proud, “Electrochemical studies of copper, copper-aluminum and copper- aluminum-silver”, Electrochemica Acta, Vol. 40, No.16 (1995), pp. 2657-2668.
[13] B. Cantor, I. T. H. Chang, P. Knight, and A. J. B.Vincent, “Microstructure development in equiatomic multicomponent alloys” ,Materials Science and Engineer A, 375-377 (2000) , pp. 213-218.
[14] C.Y. Hsu, J. W. Yeh, “Wear Resistance and High-Temperature Compression Strength of FCC CuCoNiCrAl0.5Fe Alloy with Boron Addition”, Metallurgical and Materials Transactions A, Vol. 31A (2004), pp. 1465-1469.
[15] J. Kunze, V. Maurice, L. H. Klein, H. H. Strehblow, and P. Marcus,“In situ STM study of the effect of chlorides on the initial stages of anodic oxidation of Cu(111) in alkaline solutions”,Electrochemica Acta, Vol. 48 (2003), pp. 1157-1167.
[16] Y. Y. Chen , U. T. Hong, H. C. Shih, J. W. Yeh, and T. Duval,“Electro-chemical Kinetics of the High Entropy alloys in Aqueous Enviroments – a Comparison with type-304 Stainless Steel”, Corrosion Science, Vol. 47 (2005), pp. 2679-2699.
[17] 李清祺, “鐵基合金於氯化鈉之高溫腐蝕機制”,國立台灣科技大學機械工程系博士學位論文,2006,pp. 135-136。
[18] J. Datta, C. Bhattacharya, and S. Bandyopadhyay, “Influence of Cl-, Br-, No3-, and SO42- ions on the corrosion behavior of 6061 Al alloy”, Bull. Mater. Sci., Vol. 28 (2005), pp. 253-258.
[19] G. Okamoto, “Passive film of 18-8 stainless steel structure and its function”, Corrosion Science , Vol. 13 (1973) , pp.471-489.
[20] D. Itzhak and P. Peled,“The effect of Cu addition on the corrosion behavior of sintered stainless steel in H2SO4 environment ”, Corrosion Science , Vol. 26 (1986), pp. 49-54.
[21] C. Garcia, F. Martin, P. De. Tiedra, Y. Blanco, M. Lopez,“Pitting corrosion of welded joints of austenitic stainless steels studied by using an electrochemical minicell”, Corrosion Science, Vol.26, No.1 (2008), pp. 1184-1194.
[22] J. Kunze, V. Maurice, L. H. Klein, H. H. Strehblow, and P. Marcus,“In situ STM study of the anodic oxidation of Cu(001) in 0.1M NaOH”, Journal of Electroanalytical Chemistry, 554-555 (2003), pp. 113-125.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊