跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/13 20:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃氏秋水
研究生(外文):Hoang Thi Thu Thuy
論文名稱:含軸壓力鋼骨鋼筋混凝土柱之耐震行為
論文名稱(外文):Seismic Behavior of Steel Reinforced Concrete Columns with Axial Compressive Force
指導教授:陳正誠陳正誠引用關係
指導教授(外文):Cheng-cheng Chen
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:156
外文關鍵詞:columnsseismic performanceearthquake-resistant designsteel reinforced concrete (SRC)transverse steel bars
相關次數:
  • 被引用被引用:4
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
This thesis is to experimentally investigate seismic behavior of steel reinforced concrete (SRC) columns subjected to constant axial load combined cyclically lateral loading. Ten large-scale specimens which included 5 traditional SRC columns (TSRC) and 5 new SRC columns (NSRC) were tested. The parameters studied in this test comprised: the required transverse steel bars for NSRC and TSRC when bending about x-axis and y-axis for seismic design; effectiveness of composite actuation plate (CAP) inserted in plastic hinge region; effectiveness of longitudinal flanges and effectiveness of bf/tf ratio; and the different seismic behavior between NSRC and TSRC columns.
Test resulted showed that: (1) the required transverse steel bars from ACI and TW-SRC is too conservative for SRC columns; (2) the specimens with the amount of transverse steel bars, which is based on the design concept used in this study, exhibited satisfactory behavior; (3) the CAP had effect in enhancing strength ratio and displacement ductility for the specimen; and (4) using wider flange width, using XH section instead of H section for steel shape, and using NSRC instead of TSRC can achieve better seismic performance
This thesis is to experimentally investigate seismic behavior of steel reinforced concrete (SRC) columns subjected to constant axial load combined cyclically lateral loading. Ten large-scale specimens which included 5 traditional SRC columns (TSRC) and 5 new SRC columns (NSRC) were tested. The parameters studied in this test comprised: the required transverse steel bars for NSRC and TSRC when bending about x-axis and y-axis for seismic design; effectiveness of composite actuation plate (CAP) inserted in plastic hinge region; effectiveness of longitudinal flanges and effectiveness of bf/tf ratio; and the different seismic behavior between NSRC and TSRC columns.
Test resulted showed that: (1) the required transverse steel bars from ACI and TW-SRC is too conservative for SRC columns; (2) the specimens with the amount of transverse steel bars, which is based on the design concept used in this study, exhibited satisfactory behavior; (3) the CAP had effect in enhancing strength ratio and displacement ductility for the specimen; and (4) using wider flange width, using XH section instead of H section for steel shape, and using NSRC instead of TSRC can achieve better seismic performance
Acknowledgment………………………………………………………………………..i
Abstract…………………………………………………………………………………ii
Table of content……………………………………………………………………......iii
List of tables…………………………………………………………………………….v
List of figures………………………………………………………………………….vii
Notation…………………………………………………………………….……….......x
Chapter 1 Introduction
1.1. Overview of composite columns………………………………………………..1
1.2. Objectives and scopes…………………………………………………………..3
1.3. Outline………………………………………………………………………..…4
Chapter 2 Literature review
2.1. Moment curvature analysis……………………………………………………..5
2.2. The required transverse steel bars………………………………………………5
2.3. Plastic hinge length……………………………………………………………..7
2.4. Composite actuation plate………………………………………………………9
2.5. Review previous researches…………………………………………………...10
Chapter 3 Experimental program
3.1. Design concept.………..….………………………………….………………..13
3.2. Specimens matrix……………………………………………………………...15
3.3. Fabrication details of specimens………………………………………………20
3.3.1. Material properties…………………………………….………………..20
3.3.2. Fabrication of columns…………………………………………………21
3.3.3. Fabrication of footings………………………………………………….25
3.3.4. Fabrication of complete specimens……………………………………..25
3.4. Experimental instrumentation…………………………………………………30
3.5. Testing procedure…………...…………………………………………………38
Chapter 4 Test results and interpretation
4.1. General behavior……..…………………………………….………………….41
4.2. Failure mode and strength deterioration……………………………………….46
4.3. Cracks pattern………………………………………………………………….49
4.4. Energy dissipation……...……………………………………………………...50
4.5. Evaluation of test results………………………………………………………51
4.5.1. Displacement ductility ratio…………………………………………….52
4.5.2. Plastic hinge rotation capacity………………………………………….53
4.6. Initial stiffness…………………………………………………………………54
4.7. Compare with code’s provisions……………………………………………... 54
Chapter 5 Conclusions and suggestions
5.1. Conclusions……..………………………………………….………………….57
5.2. Suggestions……..………………………………………….………………….58
References…………………….………………………………………….………........59
Appendix A. Design loading beam and set of hinges for test setup………………….115
Appendix B. Strain reading for steel bars and flanges at critical section…………… 119
[1]ACI Committee 318. “Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05)”. Farmington Hills (MI): American Concrete Institute; 2005
[2]American Institute of Steel Construction. "Specification for Structural Steel Buildings”. Chicago (IL): AISC Inc.; 2005.
[3]American Institute of Steel Construction, 2005a, “Seismic Provision for Structural Steel Buildings”.
[4]Construction Magazine. Steel reinforced concrete structure design code requirements and notes. Taiwan (Taipei); 2004 [in Chinese].
[5]James M. Ricles, and Shannon D. Paboojian, S. D. “Seismic performance of steel-encased composite columns”. Journal of Structural Engineering.
[6]H.-L. Hsu, F.-J. Jan, J.-L. Juang. “Performance of composite members subjected to axial load and bi-axial load”. Journal of Constructional Steel Research.
[7]Cheng-Chih Chen, Nan-Jiao Lin. “Experimental behavior and strength of concrete-encased composite beam-columns with T-shaped steel section under cyclic loading”. Journal of Constructional Steel Research.
[8]Cheng-Chih Chen, Nan-Jiao Lin. “Analytical for predicting axial capacity and behavior of concrete encased steel composite stub columns. Journal of Constructional Steel Research.
[9]Park, R., and Paulay, T. (1975). “Reinforced concrete structures”, John Wiley & Sons, New York, N.Y.
[10]Mander, JB, Priestley, MJN, and Park, R. (1988), “Observed stress-strain behavior of confined concrete”, Journal of Structural Engineering 1988 Vol. 114, No. 8, August, 1988.
[11]Mander, JB, Priestley, MJN, and Park, R. (1988), “Theoretical stress-strain model for confined concrete”, Journal of Structural Engineering 1988; 114(8):1804-26, August, 1988.
[12]S. Watson, F. A. Zahn and R. Park, “Confining Reinforcement for Concrete Columns”
[13]Imbsen, Charles C. XTRACT Software, Cross section analysis program for structural engineers. Single user v-2.6.2, Imbsen and associates, Inc.; 2002.
[14]C. S. Shim PhD, Y. S. Chung PhD and J. H. Han MSc. “Cyclic response of concrete encased composite columns with low steel ratio”. Structures & Buildings 161 Issue SB2.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top