跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈冠宏
研究生(外文):Guan-Hung Shen
論文名稱:射頻磁控濺鍍技術製備AZOY透明導電薄膜
論文名稱(外文):AZOY transparent conducting thin films prepared by RF magnetron sputtering
指導教授:楊證富楊證富引用關係
指導教授(外文):Cheng-Fu Yang
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:103
中文關鍵詞:射頻磁控濺鍍透明導電膜AZOY薄膜
外文關鍵詞:RF magnetron sputteringtransparent conducting filmAZOY thin film
相關次數:
  • 被引用被引用:1
  • 點閱點閱:406
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著光電產業的發展,不斷有新材料被研發,由於透明導電膜同時具有透明及導電的特性,可廣泛地應用至半導體與光電產業,例如:LCD、太陽能電池和透明觸控面板等元件,因此對透明導電薄膜的研究更顯得重要。
本實驗利用射頻磁控濺鍍系統來沉積AZOY薄膜於玻璃基板上,濺鍍過程中固定靶材與基板間的距離,分別改變氧氣濃度、腔室壓力、基板溫度、濺鍍功率和沉積時間的鍍膜參數並進行薄膜沉積,接著利用輪廓儀量測薄膜厚度以計算薄膜沉積速率,X光繞射儀、掃描式電子顯微鏡及原子力顯微鏡觀察薄膜的表面型態和微結構,分光光度計量測光穿透率,以及利用四點探針量測電性。最後利用各種機制合理解釋上述各種量測及所觀察到的現象,並找出最佳的實驗參數。
經研究結果顯示,調整薄膜的各項沉積參數,均會影響到AZOY透明導電膜的特性,而得到的最佳製程參數為氧氣濃度0%、腔室壓力在3mTorr、基板溫度400℃、濺鍍功率150W和沉積時間為120分鐘,其得到最低的電阻率為8.437×10-4Ω-cm,而薄膜在可見光區的平均穿透率約在80%左右。
As the development of photoelectricity industry, new materials are invented continuously. The researches of “transparent conducting oxide” have played an important role because the two characteristics of transparent conducting thin films, transparency and conductivity, can be widely applied for the industry of semiconductor and photoelectricity such as LCD, solar cells, and transparent touch panel etc.

This research utilizes RF magnetron sputtering system to deposit AZOY thin films on the glass substrate. During the sputtering process, the distance between target and substrate will individually alter oxygen concentration, chamber pressure, substrate temperature, sputtering power, deposition time, and deposition parameters to proceed the deposition of thin films. Then we use Alpha-step to measure the thickness of thin films in order to estimate the deposition rate of thin films’ surface. We also use XRD, SEM, and AFM to observe the morphology and the crystalline structure of thin films. In addition, transmittance can be measured by spectrophotometer and conductivity can be measured through using four-point probe. Finally, we try to interpret all phenomena that we measured and observed above in a reasonable way and find out the optimum experiment parameter.

According to the research result, adjusting the deposition parameters of thin films will affect the characteristics of AZOY transparent conducting thin films. The optimum processing parameters are 0% oxygen concentration, 3mTorr chamber pressure, 400℃ substrate temperature, 150W sputtering power, 120 mins deposition rate. In addition, the lowest resistivity is 8.437×10-4Ω-cm and the average transmittance of thin files in the region of visible is around 80%.
目錄
目錄 Ⅰ
表目錄 V
圖目錄 VI
中文摘要 1
英文摘要 2
第一章 緒論 3
1.1 前言 3
1.2 透明導電膜之應用 3
1.3 透明導電膜之種類 4
1.4 薄膜沉積方法 6
1.5 研究動機 6
1.6 本論文架構 7
第二章 理論分析 8
2.1 電漿生成理論 8
2.2 射頻磁控濺鍍原理 9
2.2.1 濺鍍原理 9
2.2.2 磁控濺鍍 10
2.2.3 反應性濺鍍 11
2.3 薄膜沉積原理 12
2.3.1 沉積現象 12
2.3.2 濺鍍薄膜之結構模型 13
2.4 氧化鋅與氧化鋅-鋁薄膜基本結構與特性簡介 14
2.4.1 氧化鋅與氧化鋅-鋁之晶體結構 14
2.4.2 氧化鋅與氧化鋅-鋁之電學性質 15
2.4.2.1 載子濃度(Carrier concentration) 15
2.4.2.2 載子遷移率(Carrier mobility) 17
2.4.3 氧化鋅與氧化鋅-鋁之光學性質 18
第三章 實驗步驟 21
3.1 AZOY濺鍍靶材的製作 21
3.2 基板的清洗步驟 22
3.3 射頻磁控濺鍍系統與薄膜沉積 22
3.4 薄膜物理特性量測 23
3.4.1 膜厚測量 24
3.4.2 X光繞射(X-Ray Diffraction, XRD)分析 24
3.4.3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)
分析 25
3.4.4 原子力顯微鏡(Atomic Force Microscopy, AFM)分析 25
3.4.5 光譜儀(Spectrophotometer)分析 26
3.4.6 四點探針(Four Point Probe)分析 27
第四章 結果與討論 28
4.1 氧氣濃度之影響 28
4.1.1 鍍膜速率之分析 28
4.1.2 晶體結構之分析 29
4.1.3 表面型態之分析 29
4.1.4 光學性質之分析 30
4.1.5 電學性質之分析 31
4.1.6 總結 32
4.2 腔室壓力之影響 32
4.2.1 鍍膜速率之分析 33
4.2.2 晶體結構之分析 33
4.2.3 表面型態之分析 33
4.2.4 光學性質之分析 34
4.2.5 電學性質之分析 35
4.2.6 總結 36
4.3 基板溫度之影響 36
4.3.1 鍍膜速率之分析 36
4.3.2 晶體結構之分析 37
4.3.3 表面型態之分析 38
4.3.4 光學性質之分析 39
4.3.5 電學性質之分析 40
4.3.6 總結 40
4.4 濺鍍功率之影響 41
4.4.1 鍍膜速率之分析 41
4.4.2 晶體結構之分析 41
4.4.3 表面型態之分析 42
4.4.4 光學性質之分析 43
4.4.5 電學性質之分析 44
4.4.6 總結 45
4.5 沉積時間之影響 45
4.5.1 鍍膜速率之分析 45
4.5.2 晶體結構之分析 46
4.5.3 表面型態之分析 46
4.5.4 光學性質之分析 47
4.5.5 電學性質之分析 48
4.5.6 總結 48
第五章 結論 49
第六章 參考文獻 51










表目錄

表1-1 透明導電薄膜材料的應用領域分類 59
表2-1 電漿產生輝光放電之反應 60
表2-2 氧化鋅基本物理性質 60
表4-1 AZOY薄膜在不同氧氣濃度下之濺鍍條件 61
表4-2 AZOY薄膜在不同腔室壓力下之濺鍍條件 61
表4-3 AZOY薄膜在不同基板溫度下之濺鍍條件 62
表4-4 AZOY薄膜在不同濺鍍功率下之濺鍍條件 62
表4-5 AZOY薄膜在不同沉積時間下之濺鍍條件 63












圖目錄
圖2-1 (a)Ar+離子與靶面之交互作用;(b)濺射現象之示意圖 64
圖2-2 射頻濺鍍標準輸出波形示意圖 65
圖2-3 平面磁控結構及電子運動路徑 65
圖2-4 反應性濺鍍之模型 65
圖2-5 薄膜沉積的步驟 66
圖2-6 濺鍍參數對沉積薄膜之影響 66
圖2-7 氧化鋅結構示意圖 67
圖2-8 氧化鋅-鋁的能帶結構圖出現所謂的Burstein-Moss效應 67
圖3-1 實驗流程圖 68
圖3-2 射頻磁控濺鍍系統構造圖 68
圖3-3 射頻磁控濺鍍系統操作步驟 69
圖3-4 α-step量測膜厚之示意圖 70
圖3-5 布拉格定律示意圖 70
圖3-6 X光繞射儀基本結構之示意圖 70
圖3-7 AFM 掃描方式之示意圖 71
圖3-8四點探針量測片電阻示意圖 71
圖4-1 AZOY薄膜在不同氧氣濃度下的沉積速率圖 72
圖4-2 AZOY薄膜在不同氧氣濃度下的XRD圖 72
圖4-3 AZOY薄膜在不同氧氣濃度下的SEM圖,(a)0%、(b)20%、
(c)40%和(d)60% 72
圖4-4 AZOY薄膜在不同氧氣濃度下的AFM圖,(a)0%、(b)20%、(c)40%和(d)60% 73
圖4-5 AZOY薄膜在不同氧氣濃度下的UV-Vis穿透率圖 75
圖4-6 AZOY薄膜在不同氧氣濃度下,吸收率對光學能隙之圖譜 75
圖4-7 AZOY薄膜在不同氧氣濃度下的電阻率關係圖 76
圖4-8 AZOY薄膜在不同腔室壓力下的沉積速率圖 76
圖4-9 AZOY薄膜在不同腔室壓力下的XRD圖 77
圖4-10 AZOY薄膜在不同腔室壓力下的SEM圖,(a)3mTorr、(b)5mTorr和(c)10mTorr 77
圖4-11 AZOY薄膜在不同腔室壓力下的AFM圖,(a)3mTorr、(b)5mTorr和(c)10mTorr 78
圖4-12 AZOY薄膜在不同腔室壓力下的UV-Vis穿透率圖 78
圖4-13 AZOY薄膜在不同腔室壓力下,吸收率對光學能隙之圖譜 79
圖4-14 AZOY薄膜在不同腔室壓力下的電阻率關係圖 79
圖4-15 AZOY薄膜在不同基板溫度下的沉積速率圖 80
圖4-16 AZOY薄膜在不同基板溫度下的XRD圖 80
圖4-17 AZOY薄膜在不同基板溫度下的SEM圖,(a)200℃、(b)250℃、(c)300℃、(d)350℃、(e)400℃和(f)450℃ 81
圖4-18 AZOY薄膜在不同基板溫度下的AFM圖,(a)200℃、(b)250℃、(c)300℃、(d)350℃、(e)400℃和(f)450℃ 82
圖4-19 AZOY薄膜在不同基板溫度下的UV-Vis穿透率圖 83
圖4-20 AZOY薄膜在不同基板溫度下,吸收率對光學能隙之圖譜 83
圖4-21 AZOY薄膜在不同基板溫度下的電阻率關係圖 84
圖4-22 AZOY薄膜在不同濺鍍功率下的沉積速率圖 84
圖4-23 AZOY薄膜在不同濺鍍功率下的XRD圖 85
圖4-24 AZOY薄膜在不同濺鍍功率下的SEM圖,(a)90W、(b)120W、(c)150W和(d)180W 85
圖4-25 AZOY薄膜在不同濺鍍功率下的AFM圖,(a)90W、(b)120W、(c)150W和(d)180W 86
圖4-26 AZOY薄膜在不同濺鍍功率下的UV-Vis穿透率圖 86
圖4-27 AZOY薄膜在不同濺鍍功率下,吸收率對光學能隙之圖譜 87
圖4-28 AZOY薄膜在不同濺鍍功率下的電阻率關係圖 87
圖4-29 AZOY薄膜在不同沉積時間下的沉積速率圖 88
圖4-30 AZOY薄膜在不同沉積時間下的XRD圖 88
圖4-31 AZOY薄膜在不同沉積時間下的SEM圖,(a)30min、(b)60min、(c)90min和(d)120min 89
圖4-32 AZOY薄膜在不同沉積時間下的AFM圖,(a)30min、(b)60min、(c)90min和(d)120min 90
圖4-33 AZOY薄膜在不同沉積時間下的UV-Vis穿透率圖 91
圖4-34 AZOY薄膜在不同沉積時間下,吸收率對光學能隙之圖譜 91
圖4-35 AZOY薄膜在不同沉積時間下的電阻率關係圖 92
[1] Tak YH, Kim KB, Park HG, et al., “Criteria for ITO (indium-tin-oxide) an organic light thin film as the bottom electrode of emitting diode”, Thin Solid Films, 411, 12-16, (2002).
[2] Carcia PF, McLean RS, Reilly MH, et al., “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering”, Applied Physics Letters, 82, 1117-1119, (2003).
[3] Nister D, Keis K, Lindquist SE, et al., “A detailed analysis of ambipolar diffusion in nanostructured metal oxide films”, Solar Energy Materials and Solar Cells, 73, 411-423, (2002).
[4] Kim DN, Lee JY, et al., “Thermal and electrical properties of BaO-B2O3- ZnO glasses”, Journal of Non-crystalline Solids, 306, 70-75, (2002).
[5] Chang JF, Kuo HH, Leu IC, et al., “The effects of thickness and operation temperature on ZnO : Al thin film CO gas sensor”, Sensors and Actuators B-chemical, 84, 258-264, (2002).
[6] 曲喜新、楊邦朝、姜節儉、張懷武,“電子薄膜材料”,北京科學出版社,(1996)。
[7] 李玉華,“透明導電膜及其應用”,科儀新知,94-102,12卷第一期。
[8] Mryasov ON, Freeman AJ, “Electronic band structure of indium tin oxide and criteria for transparent conducting behavior”, Physical Review B, 64, 233111, (2001).
[9] Nunes P, Fortunato E, et al., “Effect of different dopant elements on the properties of ZnO thin films”, Vacuum, 64, 281-285, (2002).
[10] Ohta H, Orita M, et al., “Electronic structure and optical properties of SrCu2O2”, Journal of Applied Physics, 91, 3074-3078, (2002).
[11] Yanagi H, Ueda K, Ohta H, et al., “Fabrication of all oxide transparent p-n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure”, Solid State Communications, 121, 15-17, (2002).
[12] J. R. Bellingham, W. A. Phillips and C. J. Adkins, “Electrical and optical properties of amorphous indium oxide”, J. Phys. Condens. Matter 2, 6207-6221, (1990).
[13] P. C. Joshi and S. B. Krupanidhi, “Structural and electrical characteristics of SrTiO3 thin films for dynamic random access memory applications”, Journal of Applied Physics, 73, 7627-7634, (1993).
[14] H. Hu and S. B. Krupnidhi, “Property modification of ferroelectric Pb(Zr,Ti)O3 thin films by low-energy oxygen ion bombardment during film growth”, Applied Physics Letter, 61, 1246-1248, (1992).
[15] K. Sreenivas, Abhai Mansingh, “Structural and electrical properties of rf-sputtered amorphous barium titanate thin films”, J. Appl. Phys., 62, 4475-4481, (1987).
[16] C. B. Samantaray, A. Roy, M. Roy and M. L.Mukherjee, “Vibrational spectroscopic studies on Ba0.8Sr0.2TiO3 films prepared by RF sputtering techn”, J J. Phys. & Chem. Of Solids, 63, 65-69, (2002).
[17] S. Halder and S. B. Krupanidhi, “Pulsed excimer laser ablation growth and characterization of Ba(Sn0.1Ti0.9)O3 thin films”, Solid state communications, 121, 329-332, (2002).
[18] Y. FuKuda, K. Aoki, K. Numata and A. Nishimura, “Current-voltage characteristics of electron-cyclotron-resonance sputter-deposited SrTiO3 thin films”, Jpn. J. Appl. Phys., 33, 5255-5258, (1994).
[19] C. J. Peng, H. Hu and S. B. Krupanidhi, “Low-energy oxygen ion bombardment effect on BaTiO3 thin films grown by multi-ion-beam reactive sputtering technique”, Appl. Phys. Lett., 63, 734-736, (1993).
[20] J. G. Cheng, X. J. Meng, B. Li, et al., “Ferroelectricity in sol-gel derived Ba0.8Sr0.2TiO3 thin films using a highly diluted precursor solution”, Appl. Phys. Lett., 75, 2132-2134, (1999).
[21] Ye JD, Gu SL, Zhu SM, et al., “The growth and annealing of single crystalline ZnO films by low-pressure MOCVD”, Journal of Crystal Growth, Vol.243, 151-156, (2002).
[22] F. Ruske, V. Sittinger, W. Werner, et al., “Hydrogen doping of DC sputtered ZnO:Al films from novel target material”, Surface & Coatings Technology, 200, 236-240, (2005).
[23] 林昭憲,“以電漿化學氣相沉積法蒸鍍氧化鋁薄膜之研究”,國立成功大學材料科學及工程系,碩士論文,(1995)。
[24] 陳文華,“以射頻磁控濺鍍法成長氧化鋅透明導電薄膜”,國立成功大學化學工程系,碩士論文,(2005)。
[25] 楊錦章,“基礎濺鍍電漿”,13-40,電子發展月刊第68期,(1983)。
[26] Rossnagel, S. M., J. J. Cuomo, and W. D. Westwood, “Handbook of plasma processing technology”, Park Ridge, New Jersey: Noyes Publications, (1982).
[27] J. L. Vossen and W. Kern, “Thin film process” , pp. 134, Academic Press, (1991).
[28] F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering”, J. Appl. Phys., 46, 3381-3384, (1975).
[29] E. J. Bienk, H. Jensen and G. Sorensen, “The influence of the reactive gas flow on the properties of AlN sputter-deposited films”, Mater. Sci. and Eng. A 140, 696-701, (1991).
[30] M. Ohring,“Physical vapor deposition” , Chap.3., The Materials Science of Thin Films, Academic Press, U. K., (1992).
[31] John A. Thornton, “Influence of apparatus geometry and deposition conditions on the surface and topography of thick sputtered coatings", J. Vac. Sci. Technol., 11, 666-670, (1974).
[32] H.L. Hartnagel, A.K. Jain and C. Jagadish, “Semiconducting transparent thin films”, published by Institute of Physics Publication, 17, (1995).
[33] T.Minami, H.Sato, H.Imamoto and S.Takata, “Substrate temperature dependence of transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering”, Jpn. J. Appl. Phys., 31, 253, (1992).
[34] 李玉華,“透明導電膜及其應用”,科儀新知,十二卷第一期,(1990)。
[35] D.H. Zhang, T.L. Yang, J. Ma, Q.P. Wang, et al., “Preparation of transparent conducting ZnO:Al films on polymer substrates by r. f. magnetron sputtering”, Applied Surface Science, 158, 43-48, (2000).
[36] U. Ozgur, Ya. I. Alivov, et al., “A comprehensive review of ZnO materials and devices”, J. Appl. Phys., 98, 041301, (2005).
[37] H. K. Bowen, D. R. Uhlmann and W. D. Kingery, “Introduction to ceramics”, John Wiley & Sons. Inc. 2nd , (1988).
[38] J. H. Lee, et al., “Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol-gel method”, Thin Solid Films, 426, 94-99, (2003).
[39] M. Chen, Z. L. Pei, X. Wang, X. H. Liu, C. Sun and L. S. Wen, “Intrinsic limit of electrical properties of transparent conductive oxide films”, Journal of Physics D Applied Physics, 33 2538-2548, (2000).
[40] E. Burstein, “Anomalous optical absorption limit in InSb”, Physical Review, 93, 632-633, (1954).
[41] T. S. Moss, “The interpretation of the properties of indium antimonide”, Proc. Phys. Soc. London, Ser. B, 67, 775-782, (1954).
[42] Jai Singh, “Optical properties of condensed matter and applications”, John Wiley & Sons, Ltd, England, (2006).
[43] Yong Eui Lee, Jae Bin Lee, “Microstructural evolution and preferred orientation change of radio-frequency-magnetron sputtered ZnO thin films”, J. Vac. Sci. Technol. A, 14, (1996).
[44] Jae Bin Lee, Sang Hyun Kwak, et al., “Effects of surface roughness of substrates on the c-axis preferred orientation of ZnO films deposited by r.f. magnetron sputtering”, Thin Solid Films, 423, 262-266, (2003).
[45] Ki Hyun Yoon, Ji-Won Choi, Dong-Heon Lee, “Characteristics of ZnO thin films deposited onto Al/Si substrates by r.f. magnetron sputtering, Thin Solid Films, 302, 116-121, (1997).
[46] 阿部東彥、家田正之,“電漿化學”,頁16,復漢出版社,(1984)。
[47] K. H. Kim, K. C. Park and D. Y. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering”, J. Appl. Phys., 81, 7764-7772, (1997).
[48] D. Song, P. Widenborg , et al., “Investigation of lateral parameter variations of Al-doped zinc oxide films prepared on glass substrates by rf magnetron sputtering”, SOL ENERG MAT SOL C, 73(1), 1-20, (2002).
[49] H. K. Tsai, “Influence of fabrication parameters on the performance of AZO films grown by RF magnetron sputtering”, Tatung, (2006).
[50] W. S. Choi, B. S. Jang, Y. Roh, J. Yi and B. Hong, Journal of Non-Crystalline Solids, 303, 190-193, (2002).
[51] S. K. Ghandhi, “VLSI fabrication principles”, pp. 522-575, John Wiley & Sons, INC., (1994).
[52] K. C. Park, D. Y. Ma, and K. H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering”, Thin Solid Films, 305, 201-209, (1997).
[53] S. S. Lin, J. L. Lay, P. Sajgalik, “Effect of substrate temperature on the properties of heavily Al-doped ZnO films by simultaneous r.f. and d.c. magnetron sputtering”, SURF COAT TECH, 190, 39-47, (2005).
[54] Tadatsugu Minami, Satoshi Ida, Toshihiro Miyata, “High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation”, Thin Solid Films, 416, 92-96, (2002).
[55] R.J. Honga, K. Helming, X. Jiang, B. Szyszka, “Texture analysis of Al-doped ZnO thin films prepared by in-line reactive MF magnetron sputtering”, Applied Surface Science, 226, 378-386, (2004).
[56] D. H. Zhang, T. L. Yang, J. Ma, Q. P. Wang, et al., “Preparation of transparent conducting ZnO:Al films on polymer substrates by r.f. magnetron sputtering”, Applied Surface Science, 158, 43-48, (2000).
[57] L. J. Meng, and M. P. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature”, Thin Solid Films, 322, 56-62, (1998).
[58] T.Minami, H.Sato, H.Imamoto and S.Takata, “Substrate temperature dependence of transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering”, Jan.J.Appl.Phys., 31, 253, (1992).
[59] B. Grycz, B. Gross, B. Grycz and K. Miklossy, “Non-equilibrium process in plasma technology” , pp. 354-356, American Elsevier Publishing Co., Inc., N. Y., (1969).
[60] D. D. Malinovska, N. Tzenov, and M. Tzolov, L. Vassilev, “Optical and electrical properties of RF magnetron sputtered ZnO:Al thin films”, Materials Science and Engineering B, 52, 59-62, (1998).
[61] T. Minami, H. Sato, T. Sonoda, H. Nanto, and S. Takata, “Influence of substrate and target temperatures on properties of transparent and conductive doped ZnO thin films prepared by R.F. magnetron sputtering”, Thin Solid Films, 171, 307-311, (1989).
[62] Kun Ho Kim, Ki Cheol Park and Dae Young Ma, “Structure, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering”, J. Appl. Phys., 81, (1997).
[63] Xiao-Tao Hao, Jin Ma, De-Heng Zhang, Ying-Ge Yang, Hong-Lei Ma, Chuan-Fu Cheng, Xiang-Dong Liu, “Comparison of the properties for ZnO:Al films deposited on polyimide and glass substrates”, Materials Science and Engineering, B90, 50-54, (2002).
[64] D. H. Zhang, T.L.Yang, Q.P.Wang, D.J.Zhang, “Electrical and optical properties of Al-doped transparent conducting ZnO films deposited on organic substrate by RF sputtering”, Materials Chemistry and Physics, 68, 233-238, (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top