跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許淑涵
研究生(外文):Shu-han Hsu
論文名稱:微奈米壓印用之塑膠模具及壓印材料之開發
論文名稱(外文):Development of plastic molds and imprinted materials for micro/nano imprint lithography
指導教授:鍾宜璋鍾宜璋引用關係
指導教授(外文):Yi-Chang Chung
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:166
中文關鍵詞:微奈米壓印塑膠混合模具金屬轉印技術多孔薄膜水性壓印有機無機複合材料多層次結構
外文關鍵詞:micro/nanoimprintplastic hybrid moldmetal transfernanoporous filmwater-based imprintorganic/inorganic compositehierarchical structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:591
  • 評分評分:
  • 下載下載:140
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究壓印技術的開發,研究分為三個部份:包含壓印用模具之開發、壓印製程開發以及壓印材料之開發。
壓印用模具之開發又分為兩部份,一是製作塑膠混合模具,二是製作規則孔洞薄膜。首先,在塑膠混合模具方面,擬製作凸面具有擋光層之塑膠模具,可應用於無殘餘層圖案製備。方法為利用碳黑、銀或金當作擋光層。以碳黑為擋光層之塑膠混合模具尺寸極限受限於碳黑自身聚集粒徑,本研究可利用碳黑製作20μm塑膠混合模具。以銀為擋光層之塑膠混合模具作法是將銀離子經無電電鍍還原於塑膠模具凸面,唯此方法需要先將晶種Sn離子固定於塑膠模具凸面,本研究選用之塑膠模具無法與Sn離子產生鍵結,故無法選區還原銀離子於特定區域。以金當作擋光層之塑膠混合模具作法是利用金屬或金顆粒轉印技術,得到負型塑膠混合模具(擋光層在凹槽)或正型塑膠混合模具(擋光層在凸面)。金層轉印技術可以成功轉印170 nm線寬圖案,轉印微奈米圖案面積可達1.5 cm × 1.5 cm;金粒子轉印技術可以成功轉印100 nm圖案,轉印800 nm直線面積可達直徑4 cm之圓。此外,研究中發現退火150℃兩小時會讓緊鄰的金粒子產生連結現象。另一方面,研究規則孔洞排列薄膜擬當作模具使用,利用自行合成的二氧化矽膠體溶液與Poly(St-BA-AA)混掺製作大面積、規則孔洞排列薄膜,孔洞孔徑約340 nm,孔徑間距約為404 nm,深度約2.18 nm。
壓印製程之開發方面,重點在研發水性壓印製程,並利用水性壓印製程開發有機、無機複合材料之壓印。傳統壓印製程中使用有機溶劑、需高溫高壓及材料受限等缺點在水性壓印製程中可一併得到改善與解決。水性壓印利用水為溶劑,可廣泛搭配熱塑性、熱固性及凝膠材料等,甚至可以應用於有機無機複合材料圖案之壓印,結果顯示利用Epoxy混摻1wt%在鹼催化水解的TEOS壓印800 nm直線圖案,可以增加原始Epoxy圖案的穿透度。水性壓印製程不僅符合綠色製程還有另一項特點,在適當壓印參數控制下可以製作微米級無殘餘層圖案。
最後在壓印材料之開發方面,本研究利用可分段照光聚合之新型UV阻劑,壓印多層次結構。結果顯示新型UV阻劑可以有效提升多層級結構第二層的深度(~523.6 nm)且不損毀底層圖案。
The study focusing on the development of nano/micro imprinting techniques and their applications included three major parts: fabrication of imprinted molds, development of alternative imprinting process, and design of imprintable materials.
Two imprinting molds were fabricated: one was plastic hybrid mold and the other was ordered porous mold. In the building of plastic hybrid mold, a design using the protruded area with a thin layer of metal to mask the UV light to prepare a residual layer-free pattern. Three materials were tested as the masking layers: carbon black, electroless plated silver, and deposited gold. As limited in the size of carbon black, the plastic hybrid mold with more than 20 um lines was successfully fabricated. Another silver deposition on the protruded area was achieved by immobilizing a layer of tin salt as a reduction coating. However, the tin layer did not homogeneously and selectively bind to the protruded area of plastic molds, giving a failure deposition on the molds. The direct metal transfer techniques was conducted by using different adhesion work for those contact interfaces to stick and remove the protruded gold layer (negative type) or leave the protruded gold layer (negative type). The metal layer transfer was achieved for a 170 nm featured pattern in a 1.5 cm × 1.5 cm area, while the gold particle transfer technique was able to transfer few hundreds nanometer featured pattern in area of 4 cm diameter. Sintering process at a low temperature (150℃) was performed to stable the layered gold nanoparticles on the protruded area. However, heterogeneous distribution of particles was found after 2 hr of sintering. On the other hand, an ordered, self-assembly of composite film was prepared as a nanoporous mold. We synthesized poly(St-BA-AA) emulsion to blend with silica sol prior to coat and dry the composite, giving a large-areaed polymer film with ordered nanopore arrays with 340 nm of pore diameter, 400 nm of spacing, and 2.2 nm of depth.
As for the development of imprinting process, we designed a novel water-based imprint process and its application to imprint an organic/inorganic composite. The process is available for imprinting variety of polymers which can be dispersed or emulsified in water, without using organic solvent, high temperature, heavy pressure. A recipe was tested as a water-based Epoxy prepolymer blended with base-catalyzed tetraethoxysilane precursor, giving a transparent 800nm featured pattern. Another test was conducted to fabricate a nonresidual layered pattern, owing to low viscosity of water-based imprintable recipe.
In the design of imprintable materials, a novel UV-curable resist was explored for its two staged irradiation and curing. Using the UV resist, the hierarchical structure was able to build up and its depth was increased to ~523.6 nm without collapse the first micron featured pattern.
謝誌 I
目錄 III
圖目錄 IX
表目錄 XIX
縮寫對照表 XX
摘要 1
ABSTRACT 3
第一章 緒論 5
1.1 前言 5
1.2 微觸印刷(Micro contact printing) 6
1.3 奈米壓印技術(Nano imprinting lithography, NIL) 7
1.4 步進快閃壓印技術(Step flash imprinting lithography, SFIL) 9
1.5 研究動機 11
第二章 文獻回顧 13
2.1 壓印用模具 13
2.1.1 混合型模具 13
2.1.2 模板製作技術 15
2.1.2.1 陽極氧化鋁模板 16
2.1.2.2 孔洞薄膜 17
2.2 壓印製程相關技術 20
2.2.1 逆壓印 20
2.2.1 無殘餘層製程 22
2.2.1 特殊結構製作 23
2.3 金屬轉印技術 26
第三章 實驗方法 30
3.1 實驗架構流程圖 30
3.2 藥品資料 32
3.3 儀器型號 35
3.3.1. 高解析熱電子型場發射掃描式電子顯微鏡 (High Resolution-Scanning Electron Microscopy) 35
3.3.2. 原子力顯微鏡(Atomic force microscope, AFM) 35
3.3.3. 接觸角測量儀 35
3.3.4. 傅立葉轉換紅外線光譜儀 35
3.3.5. 紫外-可見光光譜儀 35
3.3.6. 平行光曝光機 36
3.3.7. 鍍金機(一) 36
3.3.8. 鍍金機(二) 36
3.3.9. 硬度計 36
3.3.10. 粒徑分析儀 36
3.3.11. 能量分散光譜儀(Energy Dispersive x-ray Spectrometer, EDS) 37
3.3.12. 化學分析電子儀(Electron Spectroscopy for Chemical Analysis, ESCA) 37
3.3.13. 示差掃描熱分析儀(DSC) 37
3.4 壓印用模具之開發 38
3.4.1 混合模具製作 39
3.4.1.1 利用碳黑當作阻擋層 39
3.4.1.2 利用金屬當作阻擋層 40
3.4.1.2.1 無電電鍍銀 40
3.4.1.2.2 選擇蝕刻金屬圖案 43
3.4.1.2.3 轉印金屬圖案技術 46
3.4.1.2.3.1 金屬層轉印技術 46
3.4.1.2.3.2 金屬顆粒轉印技術 51
3.4.2 多孔模具製作 54
3.5 壓印製程之開發 56
3.5.1 水性壓印製程 57
3.5.1.1 印章製作 57
3.5.1.2 材料製備 58
3.5.1.3 正壓印(Conversal imprinting) 58
3.5.1.4 逆壓印(Reversal imprinting) 61
3.5.2 水性複合材料壓印 63
3.6 壓印材料之開發 64
3.6.1 UV阻劑物性量測 65
3.6.2 含氟UV阻劑 66
3.6.3 多層次結構製作 68
3.6.3.1 溶劑輔助法壓印多層次結構 68
3.6.3.2 UV光固化材料低溫壓印多層次結構 69
3.6.3.3 可分段照光聚合之新型UV阻劑壓印多層次結構 69
第四章 結果與討論 70
4.1 壓印用模具之開發 70
4.1.1 塑膠混合模具製作 70
4.1.1.1 利用碳黑當作阻擋層 70
4.1.1.2 利用金屬當作阻擋層 71
4.1.1.2.1 無電電鍍銀 71
4.1.1.2.2 選擇蝕刻金屬圖案 75
4.1.1.2.3 轉印金屬圖案技術 79
4.1.1.2.3.1 金屬層轉印技術 79
4.1.1.2.3.2 金顆粒轉印技術 86
4.1.2 多孔模具製作 92
4.1.2.1 二氧化矽膠體水解時間對孔洞薄膜成形的影響 94
4.1.2.2 二氧化矽膠體比例對孔洞薄膜成形的影響 95
4.1.2.3 Poly (St-BA-AA)乳液與二氧化矽膠體自組裝排列形成孔洞之機制 101
4.2 壓印製程技術 103
4.2.1 水性壓印製程 103
4.2.1.1 正壓印 103
4.2.1.2 逆壓印 115
4.2.2 水性複合材料壓印 119
4.3 壓印材料之開發 122
4.3.1 UV阻劑物性量測 122
4.3.2 含氟UV阻劑 126
4.3.3 多層次結構製作 129
4.3.3.1 溶劑輔助法壓印多層次結構 129
4.3.3.2 UV光固化材料低溫壓印多層次結構 131
4.3.3.3 可分段照光聚合之新型UV阻劑壓印多層次結構 134
第五章 結論 135
參考文獻 137
[1] G.E. Moore, Cramming more components onto integrated circuits, Electronics, (1965).
[2] M.D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S.A. Lyon and S.Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography", Applied Physics Letters 84, 5299-5301 (2004).
[3] A. Kumar and G.M. Whitesides, "Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ``ink'' followed by chemical etching", Applied Physics Letters 63, 2002-2004 (1993).
[4] J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo and G.M. Whitesides, "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology", Chemical Reviews 105, 1103-1170 (2005).
[5] Y. Xia, X.-M. Zhao, E. Kim and G.M. Whitesides, "A Selective Etching Solution for Use with Patterned Self-Assembled Monolayers of Alkanethiolates on Gold", Chemistry of Materials 7, 2332-2337 (1995).
[6] K.-B. Lee, D. Kim, K. Yoon, Y. Kim and I. Choi, "Patterning Si by using surface functionalization and microcontact printing with a polymeric ink", Korean Journal of Chemical Engineering 20, 956-959 (2003).
[7] W. Schwinger, E. Lausecker, I. Bergmair, M. Grydlik, T. Fromherz, C. Hasenfu and R. Schftner, "Fabrication of nano-gold islands with μm spacing using 2.5 dimensional PDMS stamps", Microelectronic Engineering 85, 1346-1349 (2008).
[8] S.Y. Chou, P.R. Krauss and P.J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers", Applied Physics Letters 67, 3114-3116 (1995).
[9] H. Tan, A. Gilbertson and S.Y. Chou, "Roller nanoimprint lithography", Papers from the 42nd international conference on electron, ion, and photon beam technology and nanofabrication 16, 3926-3928 (1998).
[10] L.J. Guo, "Nanoimprint Lithography: Methods and Material Requirements", Advanced Materials 19, 495-513 (2007).
[11] C.G. Willson and M.E. Colburn, inventors; Board of Regents, The University of Texas System (Austin, TX), assignee. "Step and flash imprint lithography". United States, (2002).
[12] P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S.V. Sreenivasan, J.C. Wolfe and C.G. Willson, "Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography", Papers from the 43rd international conference on electron, ion, and photon beam technology and nanofabrication 17, 2965-2969 (1999).
[13] M. Colburn, A. Grot, B.J. Choi, M. Amistoso, T. Bailey, S.V. Sreenivasan, J.G. Ekerdt and C.G. Willson, "Patterning nonflat substrates with a low pressure, room temperature, imprint lithography process", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 19, 2162-2172 (2001).
[14] I. McMackin, P. Schumaker, D. Babbs, J. Choi, W. Collison, S.V. Sreenivasan, N. Schumaker, M. Watts and R. Voisin, "Design and Performance of a Step and Repeat Imprinting Machine", SPIE Microlithography Conference (2003).
[15] 邱逸閎, "非光學微影技術於微米圖案製作之應用研究", (中華民國九十四年七月)
[16] B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson and G.M. Whitesides, "New Approaches to Nanofabrication: Molding, Printing, and Other Techniques", Chemical Reviews 105, 1171-1196 (2005).
[17] X. Cheng and L. Jay Guo, "A combined-nanoimprint-and-photolithography patterning technique", Microelectronic Engineering 71, 277-282 (2004).
[18] Y. Xia and G.M. Whitesides, "Soft lithography", Annual Review of Materials Science 28, 153-184 (1998).
[19] M.P. Stoykovich, H. Kang, K.C. Daoulas, G. Liu, C.-C. Liu, J.J. de Pablo, M. Müller and P.F. Nealey, "Directed Self-Assembly of Block Copolymers for Nanolithography: Fabrication of Isolated Features and Essential Integrated Circuit Geometries", ACS Nano 1, 168-175 (2007).
[20] H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina", Science 268, 1466-1468 (1995).
[21] O. Jessensky, F. Muller and U. Gosele, "Self-organized formation of hexagonal pore arrays in anodic alumina", Applied Physics Letters 72, 1173-1175 (1998).
[22] S. Grimm, R. Giesa, K. Sklarek, A. Langner, U. Gösele, H.-W. Schmidt and M. Steinhart, "Nondestructive Replication of Self-Ordered Nanoporous Alumina Membranes via Cross-Linked Polyacrylate Nanofiber Arrays", Nano Letters 8, 1954-1959 (2008).
[23] Chaowei Guo, Lin Feng, Jin Zhai, Guojie Wang, Yanlin Song, Lei Jiang and Daoben Zhu, "Large-Area Fabrication of a Nanostructure-Induced Hydrophobic Surface from a Hydrophilic Polymer", ChemPhysChem 5, 750-753 (2004).
[24] C. Ran, G. Ding, W. Liu, Y. Deng and W. Hou, "Wetting on Nanoporous Alumina Surface: Transition between Wenzel and Cassie States Controlled by Surface Structure", Langmuir 24, 9952-9955 (2008).
[25] M. Kim, K. Kim, N.Y. Lee, K. Shin and Y.S. Kim, "A simple fabrication route to a highly transparent super-hydrophobic surface with a poly (dimethylsiloxane) coated flexible mold", Chemical Communications 2007, 2237-2239 (2007).
[26] X. Sheng and J. Zhang, "Superhydrophobic Behaviors of Polymeric Surfaces with Aligned Nanofibers", Langmuir 25, 6916-6922 (2009).
[27] G. Widawski, M. Rawiso and B. Francois, "Self-organized honeycomb morphology of star-polymer polystyrene films", Nature 369, 387-389 (1994).
[28] B. You, L. Shi, N. Wen, X. Liu, L. Wu and J. Zi, "A Facile Method for Fabrication of Ordered Porous Polymer Films", Macromolecules 41, 6624-6626 (2008).
[29] X.D. Huang, L.R. Bao, X. Cheng, L.J. Guo, S.W. Pang and A.F. Yee, "Reversal imprinting by transferring polymer from mold to substrate", Papers from the 46th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication 20, 2872-2876 (2002).
[30] L.R. Bao, L. Tan, X.D. Huang, Y.P. Kong, L.J. Guo, S.W. Pang and A.F. Yee, "Polymer inking as a micro- and nanopatterning technique", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, 2749-2754 (2003).
[31] L.R. Bao, X. Cheng, X.D. Huang, L.J. Guo, S.W. Pang and A.F. Yee, "Nanoimprinting over topography and multilayer three-dimensional printing", Papers from the 46th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication 20, 2881-2886 (2002).
[32] W. Zhao and H.Y. Low, "Fabrication of hybrid bilayer nanostructure by duo-mold imprinting", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, 255-258 (2006).
[33] X. Cheng and L. Jay Guo, "One-step lithography for various size patterns with a hybrid mask-mold", Microelectronic Engineering 71, 288-293 (2004).
[34] H. Lee and G.Y. Jung, "Full wafer scale near zero residual nano-imprinting lithography using UV curable monomer solution", Microelectronic Engineering 77, 42-47 (2005).
[35] M.J. Madou, "Fundamentals of Microfabrication: The Science of Miniaturization", CRC Press, Boca Raton (2002).
[36] H.E. Jeong, S.H. Lee, P. Kim and K.Y. Suh, "High aspect-ratio polymer nanostructures by tailored capillarity and adhesive force", Colloids and Surfaces A: Physicochemical and Engineering Aspects 313-314, 359-364 (2008).
[37] H. Gao, X. Wang, H. Yao, S. Gorb and E. Arzt, "Mechanics of hierarchical adhesion structures of geckos", Mechanics of Materials 37, 275-285 (2005).
[38] B. Bhushan, Y.C. Jung and K. Koch, "Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces", Langmuir 25, 3240-3248 (2009).
[39] C. Kim, P.E. Burrows and S.R. Forrest, "Micropatterning of Organic Electronic Devices by Cold-Welding", Science 288, 831-833 (2000).
[40] C. Kim, M. Shtein and S.R. Forrest, "Nanolithography based on patterned metal transfer and its application to organic electronic devices", Applied Physics Letters 80, 4051-4053 (2002).
[41] Y.L. Loo, R.L. Willett, K.W. Baldwin and J.A. Rogers, "Interfacial Chemistries for Nanoscale Transfer Printing", Journal of the American Chemical Society 124, 7654-7655 (2002).
[42] M.Q. Xue, Y.L. Yang and T.B. Cao, "Well-Positioned Metallic Nanostructures Fabricated by Nanotransfer Edge Printing", Advanced Materials 20, 596-600 (2008).
[43] Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan and Y. Han, "Metal Transfer Printing and Its Application in Organic Field-Effect Transistor Fabrication", Advanced Materials 15, 1009-1012 (2003).
[44] X. Yu, S. Yu, Z. Wang, D. Ma and Y. Han, "Metal printing with modified polymer bonding lithography", Applied Physics Letters 88, 263517-263513 (2006).
[45] C.H. Chen and Y.C. Lee, "Contact printing for direct metallic pattern transfer based on pulsed infrared laser heating", Journal of Micromechanics and Microengineering 17, 1252-1256 (2007).
[46] M.A. Meitl, Z.-T. Zhu, V. Kumar, K.J. Lee, X. Feng, Y.Y. Huang, I. Adesida, R.G. Nuzzo and J.A. Rogers, "Transfer printing by kinetic control of adhesion to an elastomeric stamp", Nat Mater 5, 33-38 (2006).
[47] C.H. Hsu, M.C. Yeh, K.L. Lo and L.J. Chen, "Application of Microcontact Printing to Electroless Plating for the Fabrication of Microscale Silver Patterns on Glass", Langmuir 23, 12111-12118 (2007).
[48] G.O. Mallory, J.B. Hajdu (Eds.), "Electroless Plating: Fundamentals and Applications", p.441-442, American Electroplaters and Surface Finishers Society, Orlando, FL (1990).
[49] C.M. Niemeyer, C.A. Mirkin (Eds.), "Nanobiotechnology
Concepts, Applications and Perspectives", p.31-50, WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim (2004).
[50] 蔡信行主編,"化工製程及材料", p.931, 新文京開發,台北縣中和市 (2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top