跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/03/01 19:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖述權
研究生(外文):Shu-Chuan Liao
論文名稱:溶膠-凝膠法製備聚乳酸/金屬氧化物奈米複合材料之特性研究
論文名稱(外文):Preparation and Characterization of the Poly(l-lactic acid)/Metallic Oxide Nanocomposites by the Sol-gel Processing
指導教授:蘇進成蘇進成引用關係
指導教授(外文):Chean-Cheng Su
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:176
中文關鍵詞:溶膠-凝膠法聚左旋乳酸二氧化矽二氧化鈦交酯化反應
外文關鍵詞:Sol-Gel processingpoly (l-lactic acid)silicatitaniatransesterification
相關次數:
  • 被引用被引用:8
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:140
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用微分掃描熱卡計 (DSC)、偏光顯微鏡 (POM)、傅立葉紅外線光譜儀 (FT-IR)、穿透式電子顯微鏡 (TEM)、化學分析電子光譜儀 (ESCA)與廣角X-光繞射儀 (WAXD)來探討以溶膠-凝膠法製備聚乳酸/二氧化矽與聚乳酸/二氧化鈦奈米複合材料之熱行為與型態等特性。經由DSC分析結果此兩系統皆具有使結晶速率上升之趨勢,顯示二氧化矽與二氧化鈦的加入可形成晶核,改善聚乳酸結晶性質。研究中以TEM觀察無機粒子於混成材料中分布情形。偏光顯微鏡 (POM)觀察聚乳酸/二氧化矽與聚乳酸/二氧化鈦球晶型態,兩系統球晶成長速率也具有明顯之提升,於聚乳酸/二氧化鈦混成材料中,更可觀察到球晶呈現原PLLA不具有的消光環 (ring-band)型態,顯示TiO2與PLLA產生一特殊作用力,造成球晶型態改變。傅立業紅外線光譜 (FT-IR)進行分析,結果顯示聚乳酸/二氧化鈦混成材料中產生新官能基Ti-O-C吸收峰,此作用力與混成材料中之聚乳酸與二氧化鈦之相對組成量有關。由化學分析電子光譜儀 (ESCA)進一步驗證此作用力化學鍵結之變化,證實造成此作用力發生之反應機制為交酯化反應。研究中輔以廣角X-光繞射儀 (WAXD)證實混成材料因交酯化反應使原聚乳酸分子鏈斷鏈,改變結晶方式,其結晶吸收峰減弱且部分結晶吸收峰被破壞。
Characterization of the poly(l-lactic acid)/silica and poly(l-lactic acid)/titania nanocomposites by using the sol-gel processing was investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), electron spectroscopy for chemical analysis (ESCA) and wide-angle x-ray diffraction (WAXD). The result of DSC analysis confirmed that the crystallization rate increased by adding silica and titanium oxide which can form nuclei to improve the PLA crystallization. Inorganic particle distribution of composites was observed by TEM. Spherulites of Poly(l-lactic acid)/silica and poly(l-lactic acid)/titania were observed by POM, and the growth rate of spherulite is also significantly upgraded in the two systems. In particular, the ring-band in which the original PLLA spherulite does not exist, could be observed in the poly(l-lactic acid)/titanium oxide composites. As a result, titanium oxide and PLLA have a special interaction force, resulting in changes in spherulite patterns. The FTIR analysis showed that poly(l-lactic acid)/titanium oxide composites generate new functional groups in the Ti-O-C absorption peak, resulting from the interaction force between polylactic acid and titanium oxide. ESCA further verifies the binding force of the changes in chemical bonds as a result of the occurrence of the reaction mechanism for the transesterification. In addition, WAXD showed that the chemical interaction which resulted the diffraction of PLLA crystallization decreased due to the transesterification between PLLA and titanium complexes.
總目錄
謝誌 Ⅰ
目錄 Ⅱ
表目錄 Ⅳ
圖目錄 Ⅴ
中文摘要 ⅩⅡ
英文摘要 ⅩⅣ
本文 1
第一章 前言 2
第二章 原理 11
2.1溶膠�{凝膠法 11
2.2溶膠�{凝膠法反應機制 13
2.3影響溶膠�{凝膠反應因素 15
2.4高分子結晶動力學 27
2.5結晶速率與溫度 30
2.6光學顯微鏡分析 32
2.6.1球晶雙折射光學性質 35
第三章 實驗 43
3.1實驗材料 43
3.2實驗樣品製備 45
3.3實驗儀器 47
第四章 結果與討論 50
4.1 PLLA/SiO2奈米複合材料 50
4.1.1 SiO2溶膠�{凝膠反應影響因素分析 50
4.1.2 熱行為分析 54
4.1.3 等溫結晶動力分析 61
4.1.4 球晶形態與球晶成長速率分析 71
4.1.5 廣角X光繞射(WAXD)分析 93
4.1.6 微觀結構分析 93
4.2 PLLA/TiO2奈米複合材料 98
4.2.1 TiO2溶膠�{凝膠反應影響因素分析 98
4.2.2熱行為分析 104
4.2.3等溫結晶動力分析 109
4.2.4球晶形態與球晶成長速率分析 119
4.2.5微觀結構分析 138
4.2.6交酯化反應分析 138
4.2.7廣角X光繞射(WAXD)分析 145
第五章 結論 148
參考文獻 150





表目錄
表1.1 PLA與PS、LDPE性能比較 5
表1.2 PLA不同旋光性異構物物理性質表 6
表2.1各種金屬氧化物配位數與不飽和度 23
表2.2不同碳數鏈對矽氧化物之影響 24
表2.3溶膠�{凝膠反應過程中較常使用的溶劑及其物性 26
表2.4球晶成長機制與成長因次關係 29
表2.5輔助板光柵與干涉光 40
表4.1 PLLA/SiO2奈米複合材料升溫掃描數據表 60
表4.2以Avrami-equation分析PLLA/SiO2混成材料於DSC下不同恆溫結晶溫度,獲得之結晶參數 68
表4.3以Avrami-equation分析PLLA/SiO2混成材料於POM下不同恆溫結晶溫度,獲得之結晶參數 88
表4.4 PLLA/SiO2混成材料恆溫結晶85~130℃的球晶成長速率 91
表4.5 PLLA/TiO2奈米複合材料升溫掃描數據表 108
表4.6以Avrami-equation分析PLLA/TiO2混成材料於DSC下不同恆溫結晶溫度,獲得之結晶參數 116
表4.7 PLLA/TiO2混成材料恆溫結晶85~130℃的球晶成長速率 132
表4.8以Avrami-equation分析PLLA/TiO2混成材料於POM下不同恆溫結晶溫度,獲得之結晶參數 135


圖目錄
圖1.1 PLA生命週期圖 4
圖2.1溶膠�{凝膠在酸性條件水解機構 16
圖2.2溶膠�{凝膠在鹼性條件水解機構 18
圖2.3 pH值對溶膠�{凝膠反應中矽氧化物結構及形態之影響圖 19
圖2.4 pH值對溶膠�{凝膠反應中水解與縮合速率影響 20
圖2.5 R ratio及溶劑的含量對縮合速率影響 22
圖2.6結晶速率-溫度區域示意圖 31
圖2.7 PLLA馬爾它十字球晶 33
圖2.8球晶之馬爾它十字原理圖 36
圖2.9 (a)負型(negative)球晶 (b)正型(positive)球晶 38
圖2.10 上下偏光板呈90°交叉,在45°位置插入一530 nm 輔助板,
(a)負形球晶(b)正型球晶 38
圖2.11 The Michel-Levy Interferce Color Chart 39
圖2.12上下偏光板呈90°交叉,在45°位置插入一530 nm 輔助板,(a)負形球晶(b)正型球晶 41
圖3.1檢測溶膠�{凝膠條件之樣品製備流程圖 45
圖3.2 PLLA/TiO2、PLLA/SiO2 混成材料製備流程圖 46
圖4.1溶膠�{凝膠法製備SiO2之紅外線光譜圖,溶劑為三氯甲烷 (CHCl3) (a)1ml TEOS, pH=2.3 (b)1ml TEOS, pH=2.8 (c)1ml TEOS, pH=4.5 (d)0.5ml TEOS, pH=2.3 (e)0.1ml TEOS, pH=2.3 (f)1ml TEOS, pH=2.3, 50℃ 52
圖4.2溶膠�{凝膠法製備SiO2之穿透式電子顯微鏡粒子形態圖,溶劑為三氯甲烷 (CHCl3) (a)1ml TEOS, pH=2.3 (b)1ml TEOS, pH=2.8 (c)1ml TEOS, pH=4.5 (d)0.5ml TEOS, pH=2.3 (e)0.1ml TEOS, pH=2.3 (f)1ml TEOS, pH=2.3, 50℃ 53
圖4.3溶膠�{凝膠法製備SiO2之紅外線光譜圖,溶劑為1,4-二氧陸圜 (1,4-Dioxane) (a)1ml TEOS, pH=2.3 (b)1ml TEOS, pH=2.8 (c)1ml TEOS, pH=4.5 (d)0.5ml TEOS, pH=2.3 (e)0.1ml TEOS, pH=2.3 (f)1ml TEOS, pH=2.3, 50℃ 55
圖4.4溶膠�{凝膠法製備SiO2之穿透式電子顯微鏡粒子形態圖,溶劑為1,4-二氧陸圜 (1,4-Dioxane) (a)1ml TEOS, pH=2.3 (b)1ml TEOS, pH=2.8 (c)1ml TEOS, pH=4.5 (d)0.5ml TEOS, pH=2.3 (e)0.1ml TEOS, pH=2.3 56
圖4.5溶膠�{凝膠法製備之不同比例PLLA/SiO2混成材料熱重分析圖
57
圖4.6溶膠�{凝膠法製備之PLLA/SiO2混成材料熱分析圖 59
圖4.7 Neat PLLA不同恆溫結晶溫度時,結晶百分比對時間變化圖 62
圖4.8 PLLA/SiO2混成材料1wt% SiO2含量,於不同恆溫結晶溫度時,結晶百分比對時間變化圖 63
圖4.9 PLLA/SiO2混成材料3wt% SiO2含量,於不同恆溫結晶溫度時,結晶百分比對時間變化圖 64
圖4.10 PLLA/SiO2混成材料4.2wt% SiO2含量,於不同恆溫結晶溫度時,結晶百分比對時間變化圖 65
圖4.11 PLLA/SiO2混成材料17.2wt% SiO2含量,於不同恆溫結晶溫度時,結晶百分比對時間變化圖 66
圖4.12 PLLA/SiO2混成材料20.9wt% SiO2含量,於不同恆溫結晶溫度時,結晶百分比對時間變化圖 67
圖4.13 Neat PLLA在不同恆溫結晶溫度的球晶型態(85℃~125℃),倍率500X,結晶時間1小時(a)85℃ (b) 90℃ (c) 95℃ (d) 100℃ (e) 105℃ (f) 110℃ (g) 115℃ (h)120℃ (i)125℃ 72
圖4.14 PLLA/SiO2混成材料在恆溫結晶溫度的球晶型態,倍率500X,結晶1小時。(A) 85℃ (B) 90℃ (C) 95℃ 74
圖4.15 PLLA/SiO2混成材料在恆溫結晶溫度的球晶型態,倍率500X,結晶1小時。(A) 100℃ (B) 105℃ (C) 110℃ 75
圖4.16 PLLA/SiO2混成材料在恆溫結晶溫度的球晶型態,倍率500X,結晶1小時。(A) 115℃ (B) 120℃ (C) 125℃ 76
圖4.17 Neat PLLA在不同恆溫結晶溫度的球晶型態(濾光片530nm)(85℃~125℃),倍率500X,結晶時間1小時。(a)85℃ (b)90℃ (c)95℃ (d)100℃ (e)105℃ (f) 110℃ (g) 115℃ (h)120℃ (i)125℃ 77
圖4.18 PLLA/SiO2混成材料在恆溫結晶溫度 (濾光片530nm)的球晶型態,倍率500X,結晶1小時。(A) 85℃ (B) 90℃ (C) 95℃ 78
圖4.19 PLLA/SiO2混成材料在恆溫結晶溫度 (濾光片530nm)的球晶型態,倍率500X,結晶1小時。(A) 105℃ (B) 110℃ (C) 115℃ 79
圖4.20 PLLA/SiO2混成材料在恆溫結晶溫度 (濾光片530nm)的球晶型態,倍率500X,結晶1小時。(A) 115℃ (B) 120℃ (C) 125℃ 80
圖4.21 Neat PLLA不同恆溫結晶溫度時,球晶半徑隨時間變化圖 82
圖4.22 PLLA/SiO2混成材料1wt% SiO2含量,於不同恆溫結晶溫度時,球晶半徑隨時間變化圖 83
圖4.23 PLLA/SiO2混成材料3wt% SiO2含量,於不同恆溫結晶溫度時,球晶半徑隨時間變化圖 84
圖4.24 PLLA/SiO2混成材料4.2wt% SiO2含量,於不同恆溫結晶溫度時,球晶半徑隨時間變化圖 85
圖4.25 PLLA/SiO2混成材料17.2wt% SiO2含量,於不同恆溫結晶溫度時,球晶半徑隨時間變化圖 86
圖4.26 PLLA/SiO2混成材料恆溫結晶之廣角X光繞射圖(A) Neat PLLA (B) 3 wt%(B’) 3 wt%放大 94
圖4.27 PLLA/SiO2混成材料恆溫結晶之廣角X光繞射圖(A) 4.2 wt% (A’) 4.2 wt%放大 95
圖4.28 PLLA/SiO2混成材料恆溫結晶之廣角X光繞射圖(A) 17.2 wt% (B) 17.2 wt%放大 96
圖4.29 PLLA/SiO2混成材料穿透式電子顯微鏡圖,SiO2含量各為(a) 3 wt%(b) 4.2 wt% (c) 17.2 wt% (d) 20.9 wt% (e) 43.6 wt% 97
圖4.30溶膠�{凝膠法製備TiO2之紅外線光譜圖,溶劑為三氯甲烷 (CHCl3) (a)1ml TIPT, pH=2.3 (b)1ml TIPT, pH=2.8 (c)1ml TIPT, pH=4.5 (d)0.5ml TIPT, pH=2.3 (e)0.1ml TIPT, pH=2.3 (f)1ml TIPT, pH=2.3, 50℃ 100
圖4.31溶膠�{凝膠法製備TiO2之穿透式電子顯微鏡粒子形態圖,溶劑為三氯甲烷 (CHCl3) (a)1ml TIPT, pH=2.3 (b)1ml TIPT, pH=2.8 (c)1ml TIPT, pH=4.5 (d)0.5ml TIPT, pH=2.3 (e)0.1ml TIPT, pH=2.3 (f)1ml TIPT, pH=2.3, 50℃ 101
圖4.32溶膠�{凝膠法製備TiO2之紅外線光譜圖,溶劑為1,4-二氧陸圜 (1,4-Dioxane) (a)1ml TIPT, pH=2.3 (b)1ml TIPT, pH=2.8 (c)1ml TIPT, pH=4.5 (d)0.5ml TIPT, pH=2.3 (e)0.1ml TIPT, pH=2.3 (f)1ml TIPT, pH=2.3, 50℃ 102
圖4.33溶膠�{凝膠法製備TiO2之穿透式電子顯微鏡粒子形態圖,溶劑為1,4-二氧陸圜 (1,4-Dioxane) (a)1ml TIPT, pH=2.3 (b)1ml TIPT, pH=2.8 (c)1ml TIPT, pH=4.5 (d)0.5ml TIPT, pH=2.3 (e)0.1ml TIPT, pH=2.3 103
圖4.34溶膠�{凝膠法製備之不同比例PLLA /TiO2混成材料熱重分
析圖 105
圖4.35溶膠�{凝膠法製備之PLLA/TiO2混成材料熱分析圖 107
圖4.36 PLLA/TiO2混成材料1.5 wt% TiO2含量,於時不同恆溫結晶溫度時,結晶百分比對時間變化圖 110
圖4.37 PLLA/TiO2混成材料3 wt% TiO2含量,於時不同恆溫結晶溫度時,結晶百分比對時間變化圖 111
圖4.38 PLLA/TiO2混成材料5.3wt% TiO2含量,於時不同恆溫結晶溫度時,結晶百分比對時間變化圖 112
圖4.39 PLLA/TiO2混成材料18.2wt% TiO2含量,於不同恆溫結晶溫度時,結晶百分比對時間變化圖 113
圖4.40 PLLA/TiO2混成材料25.4wt% TiO2含量,於不同恆溫結晶溫度時,結晶百分比對時間變化圖 114
圖4.41 PLLA/TiO2混成材料49.4wt% TiO2含量,於不同恆溫結晶溫度時,結晶百分比對時間變化圖 115
圖4.42 PLLA/TiO2混成材料在恆溫結晶溫度的球晶型態,倍率500X,結晶1小時。(A) 85℃ (B) 90℃ (C) 95℃ 120
圖4.43 PLLA/TiO2混成材料在恆溫結晶溫度的球晶型態,倍率500X,結晶1小時。(A) 100℃ (B) 105℃ (C) 110℃ 121
圖4.44 PLLA/TiO2混成材料在恆溫結晶溫度的球晶型態,倍率500X,結晶1小時。(A) 115℃ (B) 120℃ (C) 125℃ 122
圖4.45 PLLA/TiO2混成材料在恆溫結晶溫度 (濾光片530nm)的球晶型態,倍率500X,結晶1小時。(A) 85℃ (B) 90℃ (C) 95℃ 123
圖4.46 PLLA/TiO2混成材料在恆溫結晶溫度 (濾光片530nm)的球晶型態
,倍率500X,結晶1小時。(A) 100℃ (B) 105℃ (C) 110℃ 124
圖4.47 PLLA/TiO2混成材料在恆溫結晶溫度 (濾光片530nm)的球晶型態,倍率500X,結晶1小時。(A) 115℃ (B) 120℃ (C) 125℃ 125
圖4.48 PLLA/TiO2混成材料1.5 wt% TiO2含量,於不同恆溫結晶溫度時,球晶半徑隨時間變化圖 127
圖4.49 PLLA/TiO2混成材料3 wt% TiO2含量,於不同恆溫結晶溫度時,球晶半徑隨時間變化圖 128
圖4.50 PLLA/TiO2混成材料5.3wt% TiO2含量,於不同恆溫結晶溫度時,球晶半徑隨時間變化圖 129
圖4.51 PLLA/TiO2混成材料18.2wt% TiO2含量,於不同恆溫結晶溫度時,球晶半徑隨時間變化圖 130
圖4.52 PLLA/TiO2混成材料25.4wt% TiO2含量,於不同恆溫結晶溫度時,球晶半徑隨時間變化圖 131
圖4.53 PLLA/TiO2混成材料穿透式電子顯微鏡圖,TiO2含量各為(a) 5.3 wt% (b) 18.2 wt% (c) 25.4 wt% (d) 49.4 wt% (e) 56.5 wt% 139
圖4.54混成材料(A) PLLA/TiO2 (B) PLLA/SiO2各不同含量比例下紅外線光譜圖,波數(1600-1000cm-1) 140
圖4.55 PLLA/TiO2混成材料(A)不同TiO2含量比例下於波數(2000-1600cm-1) (B) 25.4 wt% TiO2含量於波數(4000-2400cm-1),之紅外線光譜圖 141
圖4.56 PLLA/TiO2混成材料酯交換反應機制 143
圖4.57 PLLA/TiO2混成材料(A)廣範圍掃描(B)O1s高解析掃描特徵峰 144
圖4.58 PLLA/TiO2混成材料(A)5.3wt% (B)18.4wt%恆溫結晶之廣角X光繞射圖 146
圖4.59 PLLA/TiO2混成材料25.4wt% TiO2含量恆溫結晶之廣角X光繞射圖 147
[1]Joel R.Fried,“Polymer Science&Technology.”Pearson Education
Taiwan,Taiwan,(2004)
[2]戈進杰,生物降解高分子材料,pp.1-7,化學工業出版社,北京,
(2002)
[3]Okada A,Kawasumi M,Kurauchi T,Kamigaito O,“Synthesis and
characterization of a nylon 6 clay hybrid”, Polymer Preprints Div Polym
Chem Am Chem Soc. 28(2): 447–448; (1987)
[4]Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi
T, et al,“Synthesis of nylon 6-clay hybrid.”,J Mater Res, 8(5); 1179–1184
(1993).
[5]Yano K,Usuki A,Okada A,Kurauchi T, Kamigaito O.“Synthesis and
properties of polymide–clay hybrid.”,J Polym Sci Part A Polym Chem,
31(10) ; 2493–2498 (1993).
[6]Wollerdorfer M, Bader H,“Influence of natural fibers on the mechanical properties of biodegradable polymers”,Ind Crop Prod;8:105–112(1998)
[7]H. J. Lehermeier, J. R. Dorgan, D. Way,“Gas permeation properties of
poly(lactic acid)”,J. Membr. Sci.190, 243-251,(2001).
[8]J.-C. Bogaert, P. Coszach, Macromol.“Poly lactide acid a potential
solution to plastic waste dilemma.” Symp. 153,287-305,(2000).
[9]M. H. Hartmann, N. Whiteman,“TAPPI Polymers, Laminations, &
Coatings Conference“,Chicago, IL, pp. 467–474, United States (2000)
[10]Y. Ikada, K. Jamshidi, H. Tsuji, S.H. Hyon,“Stereocomplex
formation between enantiomeric poly(lactides).” Macromolecules,
20,904-906,(1987).
[11]H.Tsuji, Y.Ikada,“ Crystallization from the melt of poly(lactide)s
with different optical purities and their blends.”Macromol Chem. Phys.
197,3483-3499,(1996).
[12]戈進杰,生物降解高分子材料,pp.285,化學工業出版社,北京,
(2002)
[13]戈進杰,生物降解高分子材料,pp.289,化學工業出版社,北京,
(2002)
[14]Hongbo Li, Michel A. Huneault, “Effect of nucleation and
plasticization on the crystallization of poly(lactic acid). ” Polymer ,
48,6855-6866,(2007).
[15]SCOTT C. SCHMIDT, MARC A. HILLMYER, “Polylactide Stereocomplex Crystallites as Nucleating Agents for Isotactic Polylactide.” Journal of Polymer Science: Part B: Polymer Physics, Vol. 39, 300–313, (2001).
[16]Ke T, Sun X.“Melting Behavior and Crystallization Kinetics of
Starch and Poly(lactic acid) Composites” Journal of Applied Polymer
Science;89:1203-1210,(2003).
[17]Feirong Gong , Xiaoyan Cheng , Shanfeng Wang , Yang Wang , Yun Gao , Shujun Cheng , “Biodegradable comb-dendritic tri-block copolymers consisting of poly(ethyleneglycol) and poly(L-lactide): Synthesis, characterizations, and regulation of surface morphology and cell responses.”Polymer 50 (2009) 2775–2785
[18]L.P. Tan, S.S. Venkatraman, P.F. Sung, X.T. Wang, “Effect of plasticization on heparin release from biodegradable matrices.”International Journal of Pharmaceutics 283 (2004) 89–96
[19]Tsuji H, Takai H, Saha SK.“Isothermal and non-isothermal
crystallization behavior of poly(l-lactic acid): Effects of stereocomplex as
nucleating agent.” Polymer,47,3826-3837,(2006).
[20]Ray SS, Maiti P, Okamoto M, Yamada K, Ueda K.“New P
olylactide/Layered Silicate Nanocomposites. 1. Preparation,
Characterization, and Properties.”Macromolecules;35:3104-3110,(2002).
[21]Bledzki AK, Gassan J,“Composites reinforced with cellulose based
fibres.”, Prog Polym Sci;24:221–74(1999)
[22]Shanks RA,Hodzic A,Wong S,“Thermoplastic biopolyester
natural fiber composites.”,J Appl Polym Sci 91(4): 2114–2121(2004)
[23]Ray SS,Maiti P,Okamoto M,Yamada K,Ueda K.“Newpolylactide/
layered silicate nanocomposites: 1—preparation,characterization,
and properties.” Macromol, 35(8):3104–3110; (2002).
[24]Pluta M, Galeski A, Alexandre M, Paul MA, Dubois P.
“Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties.” J Appl Polym Sci; 86(6):1497–1506 (2002).
[25]Chang JH, An YU, Cho D, Giannelis EP.“Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II).” Polymer,44(13);3715–3720(2003).
[26]Giannelis EP. “Polymer-layered silicate nanocomposites:synthesis,
properties and applications.” Appl Organomet Chem, 12: 675–680 ;
(1998).
[27]Ray SS, Okamoto M. “Polymer/layered silicate nanocomposites:a
review from preparation to processing.” Prog Polym Sci 28(11):1539–641;(2003).
[28]L. Wu et al. “Poly(L-lactic acid)/SiO2 nanocomposites via in situ melt
polycondensation of L-lactic acid in the presence ofacidic silica sol:
Preparation and characterization”,Polymer,49;742-748(2008).
[29]S.Yan et al.“Surface-grafted silica linked with L-lactic acid ligomer:
A novel nanofiller to improve the performance of biodegradablepoly(L-lactide).” Polymer, 48,1688-1694,(2007)
[30]Okada A, Usuki A.“The chemistry of polymer-clay hybrids.” Mater
Sci Eng C;3(2):109–115,(1995).
[31]Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis
EP, et al. “Flammability Properties of Polymer−Layered-Silicate
Nanocomposites Polypropylene and Polystyrene Nanocomposites.” Chem
Mater;12(7):1866–1873,(2000).
[32]Armes SP. Polym News;20:233–237,(1995).
[33]Godovski DY.“Electron behavior and magnetic properties of polymer
nanocomposites.”Adv Polym Sci;119:78–122,(1995).
[34]Sanchez C, Julian B, Belleville P, Popall M. “Applications of hybrid organic–inorganic nanocomposites”J Mater Chem;15(35–36): 3559–3592, (2005).
[35]Boettcher SW, Fan J, Tsung CK, Shi Q, Stucky GD. “Harnessing the Sol–Gel Process for the Assembly of Non-Silicate Mesostructured Oxide Materials.”Acc Chem Res;40(9):784–792,(2007).
[36]Soler-Illia GJDA, Scolan E, Louis A, Albouy PA, Sanchez C.“Design of meso-structured titanium oxo based hybridorganic–inorganic networks” New J Chem;25(1): 156–165,(2001).
[37]Livage J, Henry M, Sanchez C. Prog Solid State Chem;18(4):259–341,(1988).
[38]Adams DM. “Metal–ligand and related vibrations: a critical survey of the infrared and Raman spectra of metallic and organometallic compounds.” New York: St. Martin’s Press; (1968).
[39]丁原傑,無機有機混合溶凝膠配置與應用,化工,第46卷第5
期,pp.63-71,(1999)年10月
[40]C. J. Brinker, and G. W. Scherer,“Sol Gel Science.” Academic press, Boston,(1990).
[41]H. Dislich, Ber. Glastechn., 1, 44,(1971).
[42]G. L. Wilkes, B. Orler and H. Huang,“Ceramers: Hybrid materials incorporating polymeric/oligomeric species with inorganic glasses by a sol-gel process.” Polym. Bul. (Berlin),14,557-564,(1985).
[43]J. P. Chen, W. S. Lin, “Sol-gel powders and supported sol-gel polymers for immobilization of lipase in ester synthesis.”Enzyme and Microbial Technology,32,801(2003)
[44]G. P. Kalaignan, D. J. Seo, S. B. Park,“Characterization of Srβ-alumina prepared by sol–gel and spray pyrolysis methods.” Materials Chemistry and Physics,85,286(2004)
[45]Q. F. Zhou, H. L. Chan, C. L. Choy,“Nanocrystalline powder and fibres of lead zirconate titanate prepared by the sol-gel process.”J. Materials Processing Technology, 63,281(1997)
[46]R. K. Nagarale, V. K. Shahi, R. Rangarajan,“Preparation of polyvinyl alcohol–silica hybrid heterogeneous anion-exchange membranes by sol–gel method and their characterization.” J. Membrane Science, 248,37(2005)
[47]B. H. Winkler, R. E. Baltus,“Modification of the surface characteristics of anodic alumina membranes using sol–gel precursor chemistry.” J. Membrane Science,226,75(2003)
[48]F. Tian, G. Zhu,“Sol–gel derived iridium composite glucose biosensor” Sensors and Actuators B: Chemical,86,266 (2002)
[49]B. J. Skutnik, M. R. Trumbull,“High strength, unbuffered optical fibers” J. Non-Crystalline Solids,239,210 (1998)
[50]A. M. Siouffi,“Silica gel-based monoliths prepared by the sol–gel method: facts and figures.” J. Chromatography A,1000,801(2003)
[51]D. R. Uhlmann, T. Suratwala, K. Davidson,J. M. Boulton, G. Teowee,“Sol—gel derived coatings on glass.” J.Non-Crystalline Solids,218,113(1997)
[52] M. Sato, E. B. Slamovich, T. J. Webster,“Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/p oly(lactide-co-glycolide) sol–gel titanium coatings.” Biomaterials,26,1349, (2005)
[53]H. H. QIN, J. H. DONG, K. Y. QIU, Y. WEI,“Synthesis and characterization of poly(methyl acrylate-co-itaconic anhydride)/TiO2 hybrid materials via sol-gel process.”Journal of Applied Polymer Science,78,1763–1768,(2000).
[54]徐國財、張立德,奈米複合材料,五南圖書出版公司,台灣,(2004)
[55]B. Himmel, T. Gerber, H. Burger, “X-ray diffraction investigations of silica gel structures.” J. Non-Crystalline Solids, 91,122(1987)
[56]V.L.Rao,M.C.Eshwar and G.N.Babu,J.Macromol. Sci-Chem., 1986,A23,1079
[57]Z.H.Huang,K.Y.Qiu and Y.Wei,J.Polym.Sci.1997,A53,2403
[58]田珮,有機/無機混成溶凝膠材料,工業技術研究院,台灣,(2004)
[59]C. J. Brinker,“Hydrolysis and condensation of silicates: Effects on structure.”J. Non-Cryst. Solid.100, 31-50(1988)
[60]C. J. Brinker, G. W. Scherer, Sol-Gel Science-The Physic s and Chemistry of Sol-Gel Processing, Academic Press ,(1990)
[61]C. J. Brinker, J. Non-Cryst. Solid. 100, 31-50(1988)
[62]G. Orcel, and L. L. Hench, J. Non-Crystalline Solids, 79, 117 (1986) .
[63]田珮,有機/無機混成溶凝膠材料,工業技術研究院,台灣,pp.123 (2004)
[64]C. J. Brinker, and G. W. Scherer, “Sol Gel Science “, Academic press, Boston, (1990).
[65]王惠君,以回應曲面法探討溶膠-凝膠法製備奈米二氧化矽之參數影響(2004)
[66]何曼君,陳維孝,董西俠,高分子物理修訂版,復旦大學出版社,上海,1993.。
[67]Sperling, L.H. ”Introduction to physical polymer sicence”, John Wiley&Sons, (1992).
[68]Arami, M. J. Chem. Phys. 7, 1103, (1939).
[69]Arami, M. J. Chem. Phys. 8, 212, (1940).
[70]陳柏樹,“特殊作用力對聚羥機基酯類與丹寧酸摻合之形態語結晶影響”,國立高雄大學應用化學系研究所,碩士論文,(2008)。
[71]何曼君,陳維孝,董西俠,高分子物理修訂版,pp75,復旦大學出版社,上海,1993.
[72]Lee, L.T.; Woo, E.M; Hou, S.S.; Fo¨rster, S. Polymer, 47, 8350,(2006).
[73]Stein, R. S.; Missra, A. J. Polym. Sci. 18, 327,(1980).
[74]Yun, J. H.; Kuboyama, K.; Ougizawa, K. Polymer, 47, 1715,(2006).
[75] Eiji MURAYAMA, OKUI Laboratory, Department of Organic and Polymeric Materials, Tokyo Institute of Technology, August 9, (2002).
[76]張維哲,”聚丁二酸二乙酯、聚丁酸二乙酯及共聚酯之檢測分析、結晶、熔融與結晶形態”,國立中山大學材料科學研究所,碩士論文,(2006)。
[77]John Gustav Delly,“The Michel-Lévy Interference Color Chart – Microscopy’s Magical Color Key.” MODERN MICROSCOPY JOURNAL Thursday, July 10,(2003)
[78]Phillip C. Robinson; Michael W. Davidson; Nikon Microscopy The source for microscopy education
[79]Nesse WD, “Introduction to Optical Mineralogy” 2nd, University of Northern Colorado, (1991).
[80]I.A. Rahman, P. Vejayakumaran, C.S. Sipaut, J. Ismail, C.K. Chee, “Size-dependent physicochemical and optical properties of silica nanoparticles.” Materials Chemistry and Physics 114, 328–332,(2009).
[81] John W. Kimball 11 July (2003)
[82]Stolyarova V. L., Plotnikov E.N., Lopatin S.I.Institute of Silicate Chemistry of the Russian Academy of Sciences
[83]Yun Hu, Harumi Sato, Jianming Zhang, Isao Noda, Yukihiro Ozaki ,“Crystallization behavior of poly(L-lactic acid) affected by the addition of a small amount of poly(3-hydroxybutyrate).” Polymer 49, 4204–4210, (2008).
[84]何曼君,陳維孝,董西俠,高分子物理修訂版,pp86-90,復旦大學出版社,上海,1993.
[85]Hideto Tsuji *, Hiroki Takai, Swapan Kumar Saha, “Isothermal and non-isothermal crystallization behavior of poly(L-lactic acid):
Effects of stereocomplex as nucleating agent.” Polymer 47, 3826–3837, (2006).
[86]陳丕哲,”PHB及PHBV摻合體的結晶動力與形態研究”,淡江大學化學工程與材料工程學系”,碩士班論文,2004。
[87]JEFFREY J. KOLSTAD, “Crystallization Kinetics of Poly(i-lactide-co-meso-lactide).” Journal of Applied Polymer Science, Vol. 62, 1079-1091 (1996)
[88]Jianming Zhang, Yongxin Duan, Harumi Sato, Hideto Tsuji, Isao Noda, Shouke Yan, and Yukihiro Ozaki, “Crystal Modifications
and Thermal Behavior of Poly(l-lactic acid) Revealed by Infrared Spectroscopy.” Macromolecules, 38, 8012-8021, (2005).
[89]Pengju Pan, Weihua Kai, Bo Zhu, Tungalag Dong, and Yoshio Inoue “Polymorphous Crystallization and Multiple Melting Behavior of Poly(l-lactide): Molecular Weight Dependence.” Macromolecules, 40, 6898-6905, (2007)
[90]María José Velasco, F. Rubio, J. Rubio, J. L. Oteo “DSC and FT-IR analysis of the drying process of titanium alkoxide derived precipitates.” Thermochimica Acta 326 91-97,(1999).
[91]Laura Mazzocchetti , Mariastella Scandola , Antonino Pollicino, “
Study of the organic–inorganic phase interactions in polyester–titania hybrids.” Polymer 49 ,5215–5224 ,(2008).
[92]Boettcher SW, Bartl MH, Hu JG, Stucky GD. J Am Chem Soc;127(27):9721–9730, (2005).
[93]Li R, Nie K, Shen X, Wang S. Mater Lett; 61(6):1368–1371, (2007).
[94]Yu DG, An JH, Ahn SD, Kang SR, Suh KS. Colloids Surf A;266(1–3):62–67, (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top