跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/15 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡本謙
研究生(外文):Ben-Cian Hu
論文名稱:未預料到波動對風險與報酬關係之影響
論文名稱(外文):The Influence of Unexpected Volatility to the Risk-Return Relation
指導教授:翁銘章翁銘章引用關係
指導教授(外文):Ming-Jang Weng
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:應用經濟學系碩士班
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:65
中文關鍵詞:超額報酬波動平滑轉換回歸不對稱非線性平滑轉換GARCH
外文關鍵詞:Excess returnVolatilitySmooth transition regressionANST-GARCH
相關次數:
  • 被引用被引用:0
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:1
Merton (1980)跨期資產定價模型(Intertemproal Capital Asset Pricing Model, ICAPM)的實證研究指出風險越高投資者會要求越高的風險貼水。然而文獻上對於風險與超額報酬之間抵換關係卻存在實證上的不一致結論。許多文獻以改進估計條件變異數的方式來試著解決負向的風險報酬抵換關係。Nam (2008)則認為是由於忽略了未預料到波動衝擊(Unexpected Volatility Shock)的影響,並得到正向風險報酬間的抵換關係。本研究以美國、日本、英國股市報酬和國庫券利率資料,延續Nam (2008)考慮前一期未預料到風險亦會對超額報酬的預期有所影響,並應用由Granger and Teräsvirta (1993)首先提出的平滑轉換回歸模型(Smooth Transition Autoregression Model)考慮變數受到不同新訊息時的平滑區間轉換,以及Nam and Krausz (2008)在變異數方程式中捕捉波動不對稱的Asymmetric Nonlinear Smooth Transition Garch (ANST-GARCH)。在研究中發現,未預料到的波動衝擊確實會對預期超額報酬有顯著的影響,不同的新訊息分別對預期報酬以及波動都有不同的影響。其中日本股市存在參數不固定的情形,因此本研究進一步應用Lundbergh, Teräsvirta and van Dijk (2003) 所提出TV-STAR (Time-Varying Smooth Transition Autoregression, TV-STAR)來進行探討,結果顯示超額報酬同時有顯著的隨時間變化與非線性的效果,預期的波動與未預料到的波動皆顯著地在不同新訊息下對預期超額報酬有不對稱的影響。
Although the intertemporal CAPM (ICAPM) of Merton (1980) implies that the expected excess market return should be positively proportional to its volatility, there are conflicting results in the existing literatures. One of the arguments is the misspecification in the variance equation which encourages many empirical literatures to develop different ways estimating the conditional volatility. Nam and Krausz (2008), however, argues that ignoring the unexpected volatility shock in the mean equation will suffer the omitting variable problem which accounts for the inconsistent findings.
This study mainly follows the idea of Nam (2008) and employs the smooth transition autoregression model (STAR model) proposed by Granger and Teräsvirta (1993) to examine the impact of unexpected volatility shock to the intertemporal relation between the expected excess return and the risk based on new information. On the other hand, in order to capture the asymmetric behavior of volatility this study uses the asymmetric nonlinear smooth transition GARCH model (ANST-GARCH) to estimate the conditional variance.
Here are some notable findings. First, the effect of unexpected volatility is statistically significant. Second, both expected and unexpected volatilities react to the new information asymmetrically. Third, empirical evidence form Japan’s stock market excess return shows that there is a smooth transition of regime switching caused over time.
第一章 緒論 1
1.1前言與研究動機 1
1.2研究架構 2
1.3 研究貢獻 3
第二章 文獻回顧 4
2.1 風險與超額報酬抵換關係之相關文獻回顧 4
第三章 實證估計模型 8
3.1實證模型 8
3.1.1 平滑轉換自我迴歸模型(Smoot Transition Autogression Model, STAR) 8
3.1.2 不對稱非線性平滑轉換GARCH模型(ANST-GARCH) 11
3.1.3 TV-STAR (Time-Varying Smooth Transition AutoRegression) 12
3.2估計模型 14
3.3診斷性檢定 17
3.3.1參數固定檢定(Parameter Constancy test) 17
3.3.2無剩餘非線性檢定(no-remaining non-linearity test) 18
3.3.3殘差序列相關檢定(residual serial correlation test) 19
3.3.4 ARCH-LM 檢定 20
3.3.5 波動不對稱性檢定 21
第四章 實證結果與分析 22
4.1資料來源與敘述 22
4.2 單根檢定 22
4.2.1 Augmented Dickey Fuller單根檢定 24
4.2.2 Phillips-Perron 單根檢定 25
4.3 模型估計結果 27
4.4 診斷性檢定結果 35
第五章 結論 44
參考文獻 46
Abel, A. B., 1988, Stock prices under time-varying dividend risk: an exact solution in an infinite-horizon general equilibrium model, Journal of Monetary Economics 22, 373-393.

Barsky, R. B., 1989, Why don’t the prices of stocks and bonds move together? American Economic Review 79, 1132-1145.

Backus, D., and A. W. Gregory, 1993, Theoretical Relations between risk premiums and conditional variances, Journal of Business and Economic Statistics 11, 177-185.

Ball, R., and S. P. Kothari, 1989, Nonstationary Expected Returns: Implications for Tests of Market Efficiency and Serial Correlation in Returns, Journal of Financial Economics 25, 51-74.

Black, F., 1976, Studies in stock price volatility changes. Proceedings of the 1976 Business Meeting of the Business and Economics Section, American Statistical Association, pp. 177–181.

Brandt, M.W., and Kang, Q., 2004, On the relationship between the conditional mean and volatility of stock returns: a latent VAR approach. Journal Financial Economics 72, 217-257.

Campbell, J. Y., 1987, Stock returns and the term structure, Journal Financial Economics 18, 373-399.

Campbell, J. Y., and L. Hentschel, 1992, No news is good news: an asymmetric model of changing volatility in stock returns, Journal Financial Economics 31, 281-318.

Christie, A.A., 1982, The stochastic behavior of common stock variances—value, leverage and interest rate effects. Journal of Financial Economics 10, 407–432.

Enders, W., 2004, Applied econometric time series, John Wiley & Sons Inc.

Engle, R.F., and Ng, V.K., 1993, Measuring and testing the impact of news on volatility. Journal of Finance 48, 1749–1778.

Fama, E. F., and French, K. R., 1993, Common risk factors in the returns on stock and bonds, Journal of Financial Economics 33, 3-56.

Fama, E. F., and French, K. R., 2002, The equity premium. Journal of Finance 57(2), 637–659.

French, K. R., Schwert G. W., and Stambaugh, R. F., 1987, Expected stock returns and volatility, Journal of Financial Economics 19, 13-29.

Fornari, Fabio and Antonio Mele, (1997) , Sign-And Volatility-Switching ARCH Models: Theory and Applications to International Stock Markets, Journal of Applied Econometrics 12, 49-65.

Ghysel, E., P. Santa-Clara, and R. Valkanov, 2005, There is a risk-return trade-off after all, Journal of Financial Economics 76, 509-548.

Glosten, L. R., R. Jagannathan, and D. E. Runkle, 1993, On the relation between the expected value and the volatility of the nominal excess return on stocks, Journal of Finance 48, 1779-1801.

Granger, C. and T. Teräsvirta (1993), Modeling Nonlinear Economic Relationships, Oxford University Press, Oxford.

Harvey, C., 1989, Time-varying conditional risk. Journal of Finance 46, 111-117.

Haugen, R. A., E. Talmor, and W. N. Torous, 1991, The effect of volatility changes on the level of stock prices and subsequent expected returns, Journal of Finance 46, 985-1007.

Kim, C. J., Morley, J. C., and Nelson, C. R., 2001, Does an intertemporal tradeoff between risk and return explain mean reversion in stock prices?, Journal of Empirical Finance 8, 403-426.

Koopman, S.J., and Uspensky, E.H., 2002, The stochastic volatility in mean model: empirical evidence from international stock markets. Journal of Applied Econometrics 17, 667–689.

Lin. C. F. and Teräsvirta, T. 1994, Testing the constancy of regression parameters against continuous structural change, Journal of Econometrics 62, 211-228.

Lucas, R. E. (1976).Economic policy evaluation: a critique. in Brunner, K. and Meltzer, A. H. eds., The Phillips curve and labor market, 19-46. Amsterdam: North-Holland.

Lundbergh, S., Teräsvirta, T. and van Dijk, D. 2003, Time-varying smooth transition autoregressive models, Journal of Business and Economic Statistics 21, 104–121.

Ludvigson, S. C., and Ng, S., 2007, The empirical risk-return relation: a factor analysis approach, Journal of Financial Economics 83, 171-222.

Merton, R. C., 1973, An intertemporal capital asset pricing model, Econometrica: Journal of the Econometric Society 41, 867-887.

Merton, R. C., 1980, On estimating the expected return on the market: An exploratory investigation, Journal of Financial Economics 8, 323-361.

Nam, K., C. S. Pyun, and A. C. Arize, 2002, Asymmetric return reversals and contrarian profits: ANST-GARCH approach, Journal of Empirical Finance 9, 475-608.

Nam, K., C. S. Pyun, and S. Avard, 2001, Asymmetric reverting behavior of short-horizon stock returns:an evidence of stock market overreaction, Journal of Banking and Finance 25, 805-822.

Nam, K., and Krausz, J., 2008, Unexpected volatility shock, volatility feedback effect, and intertemporal risk-return relation, working paper.

Nelson, D. B., 1991, Conditional Heteroskedasticity in Asset Returns: A New Approach, Econometrica 59, 347-370.

Scruggs, J. T., 1998, Resolving the puzzling intertemporal relation between the market risk premium and conditional market variance: a two-factor approach, Journal of Finance 52, 575-603.

Teräsvirta, T. 1994, Specification, estimation, and evaluation of smooth transition autoregressive models, Journal of the American Statistical Association 89, 208-218.

Tim Bollerslev, Hao Zhou, 2005, Volatility puzzles: a simple framework for gauging return-volatility regressions, Journal of Econometrics 131, 123-150.

Tong, H. (1990). Non-linear time series: a dynamical system approach, Oxford University Press, Oxford.

Turner, Christopher M., Richard Startz, and Charles R. Nelson, 1989, A Markov Model of Heteroskedasticity, Risk, and Learning in the Stock Market, Journal of Financial Economics 25, 3-22.

Van Dijk, D., Teräsvirta, T., and Franses, P. H. 2002, Smooth transition autoregressive models: a survey of recent developments. Econometric Reviews 21, 1-47.

Whitelaw, R. F., 1994, Time variations and covariations in the expectation and volatility of stock market returns, Journal of Finance 49, 515-541.

Whitelaw, R. F., 2000, Stock market risk and return: An equilibrium approach, Review of Financial Studies 13, 521-547.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top