跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施郁嫻
研究生(外文):Yu-Hsien Shih
論文名稱:(1)底層材料與光阻在下世代微影13.5nm光區的離子釋氣研究(2)Al2O3/SiO2中孔材料的製備與特性研究
論文名稱(外文):(1) Ionic outgassing from underlayer materials and photoresist upon irradiation at 13.5 nm (2) Preparation and characterization of Al2O3-modified SiO2 mesoporous materials
指導教授:鄭秀英鄭秀英引用關係
指導教授(外文):Grace H. Ho
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:應用化學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:99
中文關鍵詞:中孔洞碳材中孔洞模板化學氣相澱積法氧化矽氧化鋁含浸釋氣光阻底層材料微影極紫外光13.5 nm
外文關鍵詞:mesoporous carbon materialmesoporous templatechemical vapor depositionaluminum oxidesilica dioxideimpregnationoutgassingphotoresistunderlayer materiallithographyextreme ultraviolet13.5-nm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:529
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
(1)
下一世代22 nm以下技術節點的微影製程中,13.5 nm的極紫外光(EUV)為首選的微影光源。在高真空的製程環境下,光阻配方經EUV照射後產生的釋氣物質會造成曝光機台的光學元件汙染。過去的光阻釋氣研究皆探討中性碎片的釋氣,本實驗利用已拆卸離子源的四極質譜儀(QMS)測量光阻配方經EUV照射後,其相對的離子釋氣量、上升壓力、釋氣離子物種與F+、 CH3+和 C2H5+釋氣離子的衰變情形。本實驗使用的13.5 nm極紫外光光源來自於國家同步輻射中心的BL08A-LSGM光束線,測量樣品包括PMMA、Round-robin光阻與23種底層材料。
根據實驗結果顯示:具有含氟成分的光阻配方以F+釋氣量為主要的離子釋氣物種;不含氟成分的PMMA則會產生大量的CmHn+釋氣量並產生相對較大的壓力上升現象;壓力上升的的結果證明PMMA亦會產生大量的中性碎片釋氣。而大多數底層材料的離子與中性碎片釋氣遠低於EUV模型光阻。再者,光阻成分的F+釋氣量與光阻成分主結構含氟莫耳數比的光吸收能力成線性關係;然而,CmHn+釋氣量卻與碳氫組成所佔莫耳數比的光吸收能力無關。本實驗利用QMS方法測量光阻成分隨著曝光劑量的增加時其離子釋氣量的衰變情形,藉以推導出與光阻性質相關的Dill’s C參數以探討離子釋氣的動力學反應機制。


(2)
本實驗使用壓片機將原本僅具微孔洞的商售SiO2樣品以600 kg cm-2壓力加壓製成具有中孔洞結構的SiO2。為了使SiO2的表面活性增加,本研究利用四種Al2O3前驅物溶液經含浸、鍛燒法進行SiO2的表面修飾。將合成的10wt% Al2O3 - modified SiO2樣品壓製成具中孔洞模板特性後,利用化學氣相澱積法熱解碳源氣體CH4以合成碳材/模板複合物,再使用6% HF水溶液進行酸蝕反應去除模板後即得到中孔洞碳材。為研究含浸量、高溫鍛燒與壓力壓製對孔洞結構與進一步合成碳材的影響,實驗製成的模板與碳材樣品以X光粉末繞射儀進行進行樣品的結構定性分析,比表面積與孔徑分析儀測量樣品的比表面積、比體積與孔徑尺寸分布,以及以熱重分析儀鑑定碳材的熱穩定度與碳材產率。
實驗結果顯示:600 kg cm-2壓製與900℃鍛燒熱處理對SiO2的結構沒有影響;而含浸溶液的分子會阻塞部分微孔洞造成樣品的比表面積與比孔洞體積隨著含浸量增加而下降。以水為水溶液的含浸反應中,模板可維持比表面積並產生中孔洞結構,但孔洞分佈範圍廣,作為模版以澱積碳材的活性最低。本實驗利用不同模板所製備碳材其碳的最大燃燒速率約發生在750℃,與模版的製程無關。經Al2O3修飾的SiO2模板,其碳材澱積活性相似並大於未經修飾的模板。各實驗條件中可得到最佳化的中孔洞碳材乃是以無水參與合成過程的Al2O3 - modified SiO2為模板,並經由完全成長之所需時間的一半而反應合成的碳材,其比表面積可達1000 m2 g-1,比孔洞體積高達2.5 cm3 g-1以上。
(1)
Extreme ultraviolet lithography (EUVL) using 13.5-nm radiation as the light source is likely candidate for the next generation lithography beyond the 22 nm technology node. Under high vacuum conditions, outgassing species from EUV photoresist upon irradiation at 13.5-nm will result in the degradation of EUV optics. Previous outgassing studies of EUV photoresist focused on neutral fragment studies. This work examines relative rates of ionic outgassing, and measures pressure-rise, characterizes outgassed ions and measures decay rates of F+, CH3+, and C2H5+ from photoresist and underlayer materials upon irradiation at 13.5-nm using quadrupole mass spectrometry (QMS) without turning on the ionizer of QMS. Measurements were conducted at the BL08A - LSGM beamline of NSRRC. Test samples include PMMA, round-robin resist, and twenty-three of underlayer materials.
The result suggests that F+ is the most abundant outgassing species in most cases, except PMMA, which contains no fluorine. PMMA gives off the most abundant CH3+ and pressure-rise, and the most pressure-rise is an evidence of its abundant neutral outgassing. In addition, most underlayer materials give off less extent of overall ionic and neutral outgassing than the round-robin resist. The extent of F+ outgassing is linearly dependent on the ratio of F photoabsorption to the overall EUV photoabsorption of the sample. However, the extent of CmHn+ outgassing shows no dependency on the hydrocarbon portion of photoabsorption. This work derives the Dill’s parameter C of reactions leading to ionic outgassing by monitoring ion intensities as a function of the exposure dose using the QMS method.


(2)
This work pressed commercial microporous SiO2 samples to generate mesoporous structures by a pelleting machine. In order to increase surface reactivity of SiO2, four Al2O3 precursors were processed by the impregnation and calcination steps to synthesize Al2O3- modified the SiO2 templates. Those mesoporous templates utilized the CH4 chemical vapor deposition (CVD) method to synthesize mesoporous carbon. After CVD, these carbon/template composite were treated by 6% HF solution for the removal of the template. The SiO2, Al2O3 - modified SiO2, and resulting mesoporous carbon materials were characterized by power X-ray diffraction (XRD) to analyze their lattice structure, surface area and porosity analyzer to analyze surface and porosity, and thermogravimetric analyzer (TGA) to analyze thermal stability and the carbon growth yield.
The results suggest that the SiO2 structure stays the same after being pressed at 600 kg cm-2 and calcinated at 900°C. The surface area and pore volume decrease with the increment of impregnation as a result that the impregnated molecules choke micropores. When a Al2O3 precusor uses water as the solution, the modified templates have a similar surface area, form mesopores with a broad pore-size distribution, and give a lower reactivity for the carbon formation. The mesoporous carbon grown in a wafer-free condition has a higher carbon formation rate. The result of the TGA analysis indicates that the maximum combustion rate is identical at about 750°C for all carbon materials generated by different experimental conditions of this work. The best conditions of this work to generate mesoporous carbon with a surface area >1000 m2 g-1 and pore volume 2.5 cm3 g-1 is by growing carbon materials covering over about one half the surface area of the modified template by the water-free process.
(1)
目錄
第一章 前言 -------------------------------------------- 1
第二章 實驗方法 ---------------------------------------- 7
2.1 光束線設置 ----------------------------------------- 7
2.2 實驗裝置介紹 --------------------------------------- 7
2.2.1 實驗腔體裝置 ------------------------------------- 7
2.2.2 QMS原理 ------------------------------------------ 8
2.3 實驗方法 ------------------------------------------- 9
2.3.1 實驗樣品 ----------------------------------------- 9
2.3.2 離子相對釋氣量測量 ------------------------------ 12
2.3.3 釋氣離子質譜圖 ---------------------------------- 13
2.3.4 離子釋氣的衰變 ---------------------------------- 13
第三章 結果與討論 ------------------------------------- 15
3.1 F+、CH3+、C2H5+相對釋氣量 --------------------------15
3.1.1 離子釋氣量的量測準確度 -------------------------- 15
3.1.2 相對離子釋氣量 ---------------------------------- 15
3.1.3 模型光阻與PMMA的離子相對釋氣量 ------------------ 22
3.2 樣品釋氣離子質譜圖 -------------------------------- 25
3.2.1 釋氣離子物種質譜的測量 -------------------------- 25
3.2.2 模型光阻與PMMA釋氣離子物種質譜圖 ---------------- 30
3.3 釋氣離子衰變情形 ---------------------------------- 31
第四章 結論 ------------------------------------------- 36
參考文獻 ----------------------------------------------- 38
附錄一 底層材料---------------------------------------- 41
附錄二 同步輻射---------------------------------------- 42


(2)
目錄
第一章 前言 -------------------------------------------- 1
第二章 實驗方法 ---------------------------------------- 5
2.1 合成模版 ------------------------------------------- 5
2.1.1 具中孔洞結構SiO2模板的備製 ----------------------- 5
2.1.2 具中孔洞結構Al2O3 – modified SiO2模板的備製------ 7
2.1.3 鍛燒熱處理與壓製效應 ---------------------------- 11
2.2 合成碳材 ------------------------------------------ 12
2.2.1 孔洞碳材合成 ------------------------------------ 12
2.2.2 酸蝕反應 -----------------------------------------14
2.3 樣品特性鑑定 -------------------------------------- 14
2.3.1 Powder X-Ray diffraction (XRD,粉末X射線繞射儀) --14
2.3.2 Surface area and porosity analyzer (比表面積與孔徑分析儀) -------------------------------------------------- 15
2.3.3 Thermogravimetric Analyzer (TGA,熱重分析儀) ---- 17
2.4 反應條件總表 -------------------------------------- 18
第三章 結果與討論 ------------------------------------- 21
3.1 Al2O3前驅物含浸量效應 ------------------------------ 21
3.2 SiO2模板的熱處理與壓製效應 ------------------------- 23
3.3合成碳材 -------------------------------------------- 29
3.3.1碳材成長 ------------------------------------------ 29
3.3.2酸蝕後碳材 ---------------------------------------- 34
第四章 結論 ------------------------------------------- 38
參考文獻 ----------------------------------------------- 39
(1)
1.International Technology Roadmap for Semiconductors, 2008 update. http://www.itrs.net/reports.html
2.International EUV Initiative, http://ieuvi.org
3.Center for X-ray Optics,
http://www-cxro.lbl.gov/index.php?content=/tool.html
4.Dean, K. R.; Denbeaux, G.; Wüest, A.; Garg, R. J. Photopolym. Sci. Technol. 2007, 20, 393.
5.Dean, K. R.; Nishiyama, I.; Oizumi, H.; Keen, A.; Cao, H.; Yueh, W.; Watanabe, T.; Lacovig, P.; Rumiz, L.; Denbeaux, G. ; Simon, J. Proc. SPIE 2007, 6519, 65191.
6.Kobayashi, S.; Santillan, J. J.; Itani, T. J. Photopoly. Sci. Technol. 2008, 21, 469.
7.Kobayashi, S.; Santillan, J. J.; Oizumi, H.; Itani, T. Proc. SPIE 2009, 7273, 72731.
8.Denbeaux, G. Proc. SPIE 2008, 6921, 69211.
9.Ho, G. H.; Liu, C.-J.; Yen, C.-H; Ho, M.-H; Wu, S.-Y Microelectronic Engineering 2008, 85, 2213.
10.Mayhew, C. A.; Smith, D. J. Phys. B: At. Mol. Opt. Phys. 1900, 23, 3139.
11.Sieck, L. W.; Lias, S. G. J. phys. Chem. Ref. Data 1976, 5, 1123.
12.Samson, J. A. R.; Stolte, W. C. J. Electron Spectrosc. Relat. Phenom. 2002, 123, 265.
13.Kobayashi, A.; Fujiki, G.; Okaji, A.; Masuoka, T. J. Phys. B 2002, 35, 2087.
14.Feng, R.; Cooper, G.; Brion, C. E. J. Electron Spectrosc. Relat. Phenom. 2002, 123, 211.
15.Chris A. Mack, Fundamental principles of optical lithography, SPIE PRESS, Bellingham, Washington USA, 2007.
16.Ishida, T.; Sakamoto, R.; Hiroshi, Y.; Sakaida, Y.; Hamada, T. Proc. SPIE 2008, 6923,69232.
17.Ma, A.; Park, J-O.; Dean, K.; Wurm, S.; Naulleau, P. Proc. SPIE 2008, 6921, 69213.
18.Tseng, P.-C.; Lin, H.-J; Chung, S.-C; Chen, H.-F; Dann, T.-E.; Song, Y.-F.; Fsieh, T.-F.; Tsang, K.-L.; Chang, C.-N Rev. Sci. Instrum 1995, 66, 1658.
19.Ho, G. H., unpublished data.
20.John F. O’Hanlon, A User’s Guide to Vacuum Technology A JOHN WILEY & SONS, INC., PUBLICATION, 2003.
21.Dentinger, P. M. J. Vac. Sci. Technol. B 2000, 18(6), 3364.
22.NISSAN CHEMICAL INDUSTRIES, LTD., “EUVリソグラフィー用レジスト下層膜の開発”in 先端技術セミナー2009,2009.
23.Kwark, Y.-J. J. Vac. Sci. Technol. B 2006, 24(4), 1822.
24.Santillan, J. J.; Kobayashi, S.; Itani, T. Jap. J. App.Phys. 2008, 47(6), 4922.
25.Pollentier, I.; Aksenov, G.; Goethals, A-M.; Gronheid, R.; Jonckheere, R.; Leeson, M. Proc. SPIE 2009, 7271, 727146.
26.Yueh, W.; Cao, H. B.; Thirumala, V.; Choi, H. Proc. SPIE 2005, 5753, 765.


(2)
1.Davis, M. E.; Saldarriaga, C.; Montes, C.; Graces, J.; Crowder, C. Nature 1998, 331, 25.
2.Barrer, R. M. Proc. Roy. Soc. A 1938, 167, 392.
3.Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. H.; Pericone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K. Pure Appl. Chem. 1994, 66, 1739.
4.Estermann, M.; McCusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H. Nature 1991, 352, 320.
5.Moore, P. B.; Shen, J. Nature 1983, 306, 356.
6.Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
7.Chakraborty, B.; Pulikottil, C. A.; Viswanathan, B. Catalysis Letters 1996, 39.
8.Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J. Nature 1994, 368, 321.
9.Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 27, 548.
10. Wang, W.; Xie, S.; Zhou, W.; Sayari, A. Chem. Mater. 2004, 16, 1756.
11. Kim, S. S.; Pauly, T. R.; Pinnavaia, T. J. Chem. Commun. 2000, 1661.
12. Kim, S. S.; Pinnavaia, T. J. Chem. Commun. 2001, 2418.
13. Claytec. Inc, http://www.claytecinc.com
14. Yang, T.; Lua, C. A. Journal of Colloid and Interface Science 2003,
267, 408.
15. Oya, A.; Yoshida, S.; Alcaniz-Monge, J.; Linares-Solano, A. Carbon
1995, 33, 1085.
16. Oya, A.; Kasahara, N. Carbon 2000, 38, 1141.
17. Pekala, R. W.; Schaefer, D. W. Macromolecules 1993, 26, 5487.
18. Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986, 352, 3.
19. Xia, Y.; Mokaya, R. Adv. Mater. 2004, 16, 1553.
20. Ma, Z. X.; Kyotani, T.; Tomita, A. Chem. Commun. 2000, 2365.
21. Muradov, N.; Smith, F.; T-Raissi, A. Catalysis Today 2005, 2.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊