跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高美貞
研究生(外文):Mei-Chen Kao
論文名稱:以結構方程模式探究農會員工對數位學習系統之採用意向研究
論文名稱(外文):Applying the Structural Equation Modeling to Study the Intentions of the Employees of farmers Association for Adopting E-Learning System
指導教授:黃信豪黃信豪引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:工業工程與管理研究所在職專班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:79
中文關鍵詞:農會數位學習科技接受模式結構方程模式
外文關鍵詞:Farmers Associatione-learning technology acceptance modelstructural equation modeling
相關次數:
  • 被引用被引用:3
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
隨著資訊科技的快速發展,數位學習已經逐漸替代了傳統的學習方式。由於企業面臨嚴峻的競爭,必須隨時自我調整以適應新的環境,而農會也不能倖免於外。數位學習就成了輔助企業訓練優秀人才、提昇員工職能的有效方法。因此,數位學習就成為農會教育訓練的主流趨勢。
本研究以科技接受模式、計畫行為理論等相關理論做為基礎,探究國內農會員工對於引進數位學習系統的行為意向。本研究以結構方程模式進行驗證性因素分析,並檢驗各潛在構面之間的因果關係。研究結果發現:農會員工對於數位學習系統的採用意向,除「知覺易用性」並不能正向影響農會員工的「態度」外,與科技接受模式的理論相符。此外,農會員工的「電腦自我效能」對數位學習系統的「知覺有用性」亦無法達到顯著影響;而「樂觀主義」、「知覺行為控制」與「主觀規範」卻透過間接或直接的方式深深正向影響農會員工對數位學習系統的採用行為意向。希冀透過本研究可以更進一步瞭解農會員工對數位學習系統的採用意向,提供數位學習軟體開發者及農會管理階層參考之用。
Due to the rapid development of information technology, e-learning has gradually replaced traditional learning method. At present, companies and even farmers associations are facing severe competition, so they need to adjust themselves in order to adapt to the new environment. Therefore, e-learning has become an effective way to help train and enhance employee’s ability.
Based on technology acceptance model and theory of planned behavior, this study investigates farmers association employee’s behavior intention on accepting e-learning system. Structural equation modeling method is used to analyze and verify the relationship among variables. The results show that there is no positive relationship between Perceived Ease of Use and Attitude toward adopting
e-learning. In addition, Employee’s Computer Sufficiency has no significant affect on Perceived Usefulness of
e-learning system. Optimism, Perceived Behavior Control and Subjective Norm have positive effect on employees toward adopting e-learning. Hopefully, the results of this study can help e-learning software developers and Farmers Association management in getting more understanding of employee’s intention on using e-learning system.
中文摘要 i
英文摘要 ii
誌謝 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1. 1 研究背景與動機 1
1. 2 研究目的 4
1. 3 研究流程及架構 5
1. 4 研究範圍與限制 8
第一章 文獻探討 9
2. 1 農會人力資源訓練 9
2. 2 數位學習 17
2. 3 科技接受模式 22
2. 4 計畫行為理論 25
2. 5 自我效能 29
2. 6 樂觀主義 32
第三章 研究設計 35
3. 1問卷設計 35
3. 2 研究對象與樣本蒐集 38
3.3 研究問卷前測與先導測試 39
3. 4資料分析方法 39
3.5 基本資料分析 42
第四章 實證分析 44
4. 1 信效度分析 44
4. 2 測量模式分析 49
4. 3 結構模式分析 56
4. 4 研究模式效果 58
第五章 結論與建議 64
參考文獻 67
附錄一 78
1.何淑熏、柯盈吟、黃瓊慧(民96),「從網路銀行自助服務探討創新對顧客價值之影響」,電子商務研究,第5卷第4期,463-483頁。
2.李清宏(民94),Kiosk應用創意不少,值得國內業者參考,資策會ACI-IDEA-FIND。網址:http://www.find.org.tw/0105/trend/0105_trend_friendly_print.asp?trend_id=1301
3.杜念魯(民97),複雜度高互動式kiosk應用市場-IPC業今年布局重點。DIGITIMES電子時報,2008/04/05。
4.林茂仁(民97),與遠通電收合作 統一超強攻ibon。經濟日報,2008/04/08。
5.洪新源、梁定澎、張嘉銘(民94),「科技接受模式之彙總研究」,中華民國資訊管理學報,第十二卷第四期,211-234頁。
6.蕭文龍(民96),多變量分析最佳入門實用書,�眳p資訊,台北市。
7.賴士葆、顏永森(民93),「網際網路自助服務對消費者再購意願影響之研究」,電子商務研究,第2卷第3期, 259-278頁。
8.邱皓政(民95),結構方程模式,雙葉書廊,台北市。
9.陳順宇(民93),多變量分析,華泰書局,台北市。
10.黃芳銘(民95),社會科學統計方法學-結構方程模式,五南書局,台北市。
11.孫志麟,1991,國民小學教師自我效能及其相關因素之研究,國立政治大學,碩士論文。
12.施又瑄,2005,以科技接受模式與使用滿足理論探討網路消費者行為,國立高雄第一科技大學,碩士 論文。
13.賈智仁,2004,結合創新理論與計劃行為理論以探討行動多媒體物件之採用,國立暨南國際大學,碩士論文。
14.蘇衍如,(民88)大眾傳播媒體贊助公益活動之決策及其影響因素之研究,輔仁大學大眾傳播研究所,碩士論文。
15.鄒景平,2000,全球電子學習市場蓄勢待發,管理雜誌。
16.黃貝玲,2001,協同商務價值鏈管理,電子化企業經理人報告。
17.陳舒怡,2006,農業全球化趨勢下農業組織內資源發展訓練需求之研究,台灣商管與資訊研討會。
18.張基成;莊智明,1997科技化訓練新趨勢下的網路化訓練-網際網路與全球資訊網在企業教育訓練上的應用,遠距教育第八期。
19.Arthur Andersen Business Consulting,2000,劉京偉譯,知識管理的第一本書,商周出版,台北。
20.Davenport ,T. H. & L. Prusak,L, 1999,胡瑋珊譯,知識管理,中國生產力中心,台北。
21.張火燦,1998,策略性人力資源管理,台北,揚智。
22.張春興(2002),心理學原理,台北:東華。
23.Ajzen, I. (1991), “The theory of planned behavior,” Organizational Behavior and Human Decision Processes, 50(2), 179-211.
24.Ajzen, I. and Fishbein, M. (1975), Belief, attitude, intention, and behavior: An introduction to theory and research. MA: Addison-Wesley. Boston.
25.Anderson, J. C., and Gerbing, D. W. (1992), "Assumptions and comparative strengths of the two-step approach: Comment on Fornell and Yi," Sociological Methods and Research, 20(3), 321-333.
26.Anderson, J. C., and Gerbing, D. W. (1988), "Structural equation modeling in practice: A review and recommended two-step approach," Psychological Bulletin, 103(3), 411-423.
27.Bagozzi, R. (1997), "Convergent and discriminant validity by analysis of covariance structures: The case of affective behavioral, and cognitive components of attitude," in: Advances in Consumer Research, J. W. D. Perreault (ed.), 9-31.
28.Bagozzi, R. P., and Yi, Y. (1988), "On the evaluation for structural equation models," Journal of the Academy of Marketing Science, 16 (1), 74-94.
29.Bandura, A. (1977), ”Self-efficacy: toward a unifying theory of behavioral change, “ Psychological Review, 84(2), 191–215.
30.Bandura, A. (1982), “Self-efficacy mechanism in human agency,” American Psychologies, 37(2), 122–147.
31.Baron, R., and Kenny, D. (1986), "The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations," Journal of Personality and Social Psychology, 51(6), 1173-1182.
32.Bentler, P. M. (1990), "Comparative fit indexes in structural models," Psychological Bulletin, 107 (2), 238-246.
33.Bollen, K. (1989), Structural equations with Latent Variables Wiley, N. Y.,
34.Bollen, K., and Long, J. S. (1993), Testing Structural Equation Models Sage, Beverly Hill, CA.
35.Burton-Jones, A., and Hubona, G. S. (2006), "The mediation of external variables in the technology acceptance model," Information & Management, 43(6), 706-717.
36.Chin, W. W., and Todd P. (1995), "On the use, usefulness, and ease of use of structural equation modeling in MIS research: A note of caution," MIS Quarterly, 19 (2), 237-246.
37.Cho, V.(2006), “A study of the roles of trusts and risks in information-oriented online legal services using an integrated model,” Information & Management, 43(4) ,502–520.
38.Compeau, D. R., and Higgins, C. A. (1995), “Computer self-efficacy: Development of a measure and initial test,” MIS Quarterly, 19(2), 189-211.
39.Cyr, D., Head, M., and Ivanov, A. (2006), "Design aesthetics leading to m-loyalty in mobile commerce," Information & Management, 43(8), 950-963.
40.Dabholkar, P. A. (1996), “Consumer Evaluations of New Technology-Based Self Service Options: An Investigation of AlternativeModels of Service Quality,” International Journal of Research inMarketing, 13(1), 29-51.
41.Dabholkar, P. A., and Bagozzi R. P. (2002), “An Attitudinal Model of Technology-Based Self-Service: Moderating Effects of Consumer Traits and Situational Factors,” Journal of the Academy of Marketing Science, 30(3), 184-201.
42.Dabholkar, P. A., Bobbitt, L. M., and Lee, E. J. (2003), “Understanding Consumer Motivation and Behavior Related to Self-Scanning in Retailing: Implications for Strategy and Research on Technology- Based Self-Service,” International Journal of Service Industry Management, 14, (1), 59-95.
43.Davis, F. D. (1989), “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” MIS Quarterly, 13(3), 319-340.
44.Erikssona, K., and Nilssonb, D. (2007), ”Determinants of the continued use of self-service technology: The case of Internet banking,” Technovation, 27(4), 159–167.
45.Flavian, C., Guinalıu, M., and Gurrea, R. (2006), “The role played by perceived usability, satisfaction and consumer trust on website loyalty," Information & Management, 43(1), 1-14.
46.Fornell, C.(1982), A Second Generation of Multivariate Analysis: Measurement and Evaluation Praeger, New York.
47.Fornell, C., and Larcker, D. F. (1981), "Evaluating structural equation models with unobservable and measurement errors," Journal of Marketing Research, 18(1), 39-50.
48.Gay, L. R. ( 1992), Educational Research Competencies for Analysis and Application Macmillan, New York.
49.Hackbarth, G., Grover, V., and Yi, M. Y. (2003), "Computer playfulness and anxiety: positive and negative mediators of the system experience effect on perceived ease of use," Information & Management, 40(3), 221-232.
50.Hair, J.F., Anderson, R.E., Tatham, R.L., and Black, W.C. (1992), Multivariate data analysis with reading, (3rd ed.) Macmillan Publishing Company, New York., 1992.
51.Hair, J.F., Anderson, R.E., Tatham, R.L., and Black, W.C. (1998), "Multivariate data analysis with reading," (3rd ed.) Macmillan Publishing Company, New York.
52.Hasan, B. (2006), "Delineating the effects of general and system-specific computer self-efficacy beliefs on IS acceptance," Information & Management, 43(5), 565-571.
53.Hoffman, K. D., and Bateson, J. E. G. (2001), Essentials of Services Marketing: Concepts, Strategies and Cases(2nd ed.), South-Western College.
54.Hsu, C. L., and Lin, J. C. C. (2008), "Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation," Information & Management, 45(1), 65-74.
55.Hsu, C. L., and Lu, H. P. (2004), “Why do people play online games? An extended TAM with social influences and flow experience,” Information & Management, 41(7), 853–868.
56.Hsu, M. H., and Chiu, C. M. (2004), “Internet Self-Efficacy and Electronic Service Acceptance,” Decision Support Systems, 38(3), 369-381.
57.Hu, P. J. H., Clark, T. H. K., and Ma, W. W. (2003), "Examining technology acceptance by school teachers: a longitudinal study," Information & Management, 41(2), 227-241.
58.Igbaria, M., and Iivari, J. (1995), “The Effects of Self-efficacy on Computer Usage,” Journal of Management Science, 23(6), 587-605.
59.Igbaria, M., Guimaraes, T., and Davis, G. B. (1995), “Testing the determinants of microcomputer usage via a structural equation model,” Journal of Management Information Systems, 11(4), 87-114.
60.Jarvenpaa, S.L ., Tractinsky, N., and Vitale, M. (2000) "Consumer trust in an internet store," Information Technology and Management, 1(1-2), 45-71.
61.Joreskog, K.G., and Sorbom, D. (1984), Analysis of linear structural relationship by maximum likelihood Scientific Press, Chicago.
62.Joreskog, K.G., and Sorbom, D. (1992), LISREL: A Guide to the Program and Applications, (3nd ed.) Scientific Software International, Inc., Chicago.
63.Kauffman, R.J. and Laura L. (1994), ” A Value Platform Analysis Perspective on Customer Access Information Technology,” Decision Science, 25(5-6), 767-794.
64.Kim, B. G., Park, S. C., and Lee, K. J. (2007), “A structural equation modeling of the Internet acceptance in Korea,” Electronic Commerce Research and Applications, 6(4), 425–432.
65.Konradta, U., Christophersena, T., and Schaeffer-Kuelzb, U. (2006)Predicting user satisfaction, strain and system usage of employee self-services,” International Journal of Human-Computer Studies, 64(11), 1141–1153.
66.Lee, H. Y., Ahn, H., Han, I. (2007), "VCR: Virtual community recommender using the technology acceptance model and the user’s needs type," Expert Systems with Applications, 33(4), 984-995.
67.Light, D. A. (2001), “Sure, You can Trust Us,” MIT Sloan Management Review, 43(1), 17.
68.Lin, H. H., and Wang, Y. S. (2006), "An examination of the determinants of customer loyalty in mobile commerce contexts," Information & Management, 43(3), 271-282.
69.Liu, L., and Ma, Q. (2005), "The impact of service level on the acceptance of application service oriented medical records," Information & Management, 42(8), 1121-1135.
70.Lu, J., Liu, C., Yu, C. S., Wang, K. (2008), "Determinants of accepting wireless mobile data services in China," Information & Management, 45(1), 52-64.
71.Luarn, P., and Lin, H. H. (2005), "Toward an understanding of the behavioral intention to use mobile banking," Computers in Human Behavior, 21(6), 873-891.
72.Lucas, H. C., and Spitler V. K. (2000), "Implementation in a World of Workstations and Networks," Information & Management, 38(2), 119-128.
73.MacCallurn, R.C., and Hong, S. (1997), "Power analysis in covariance structure modeling using," Multivariate Behavioral Research, 32(2), 193-210.
74.Meuter, M. L., Ostrom, A. L., Bitner, M. J., and Roundtree R. (2003), “The Influenceof Technology Anxiety on Consumer Use and Experiences with Self-ServiceTechnology,” Journal of Business Research, 56(11), 899-906.
75.Meuter, M. L., Ostrom, A. L., Roundtree, R. I., and Bitner M. J. (2000), “Self-Service Technologies: Understanding Customer Satisfaction with Technology-Based Service Encounters,” Journal of Marketing, 64(3), 50-64.
76.Meuter, M.L., and Bitner M. J. (1998), ”Self-Service Technologies: Extending Service Frameworks and Identifying Issues for Research,” in Marketing Theory and Applications, Dhruv Grewal and Connie Pechman. eds. Chicago: American Marketing Association, 9, 12-19.
77.Moon, J. W., and Kim, Y. G. (2001), “Extending the TAM for a World-Wide-Web context,” Information & Management, 38(4), 217-230.
78.Nissenbaum, H. (2001), “Securing Trust Online: Wisdom or Oxymoron?,” Boston University Law Review, 81(3), 635-664.
79.Nunnally, J. C. (1987), Psychometric Theory, (2nd ed.) McGraw-Hill, New York.
80.Nunnally, J. C., and Bernstein, I. H. (1994), Psychometric Theory McGraw-Hill, New York.
81.Parasuraman, A., and Grewal, D. (2000), “The Impact of Technology on the Quality-Value-Loyalty Chain: A Research Agenda,” Journal of the Academy of Marketing Science, 28(4), 168-174.
82.Porter, C. E., and Donthu, N. (2006), "Using the Technology Acceptance Model to Explain How Attitudes Determine Internet Usage: The Role of Perceived Access Barriers and Demographics," Journal of Business Research, 59(9), 999-1007.
83.Reisinger, Y., and Turnerm, L. (1999), "Structural equation modeling with LISREL: application in tourism," Tourism Managemen, 20(1), 71-88.
84.Schepers, J., and Wetzels, M. (2007), "A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects," Information & Management, 44(1), 90-103.
85.Shih, H .P. (2004), "technology acceptance model of Internet utilization behavior," Information & Management, 41(6), 719-729.
86.Sweeney, J. C., Soutar, G. N., and Johnson, L. W. (1999), "The role of perceived risk in quality-value relationship: A study in a retail environment," Journal of Retailing, 75(1), 77-105.
87.Szajna, B. (1996), “Empirical evaluation of the revised technology acceptance model,” Management Science, 42(1), 85-92.
88.Taylor, S., and Todd, P. (1995), “Understanding information technology usage: A test of competing models,” Information Systems Research, 6(2), 44-176.
89.Turel, O., Serenko, A., and Bontis, N. (2007), "User acceptance of wireless short messaging services: Deconstructing perceived value," Information & Management, 44(1), 63-73.
90.Van der Heijden, H. (2003), "Factors influencing the usage of websites: the case of a generic portal in The Netherlands," Information & Management, 40(6), 541-549.
91.Van Raaij E. M., Schepers, J. J. L. (2008), “The acceptance and use of a virtual learning environment in China,” Computers and Education, 50(3), 838–852.
92.Venkatesh, V., and Davis, F. D. (2000), “A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies,” Management Science, 45(2), 186-204.
93.Venkatesh, V., Morris, M. G., and Ackerman, P. L. (2000)“A Longitudinal Field Investigation of Gender Differences in Individual Technology Adoption Decision Making Processes,” Organizational Behavior and Human Decision Processes, 83(1), 33-60.
94.Vijayasarathy, L. R. (2004), "Predicting consumer intentions to use on-line shopping: the case for an augmented technology acceptance model," Information & Management, 41(6), 747-762.
95.Wang, Yi-Shun, Lin, H. H., and Luarn, P. (2006), “Predicting Consumer Intention to Use Mobile Service,” Information Systems Journal, 16(2), 157-179.
96.Wu, I. L., and Chen, J. L. (2005), “An extension of Trust and TAM model with TPB in the initial adoption of online tax: an empirical study,” International Journal of Human Computer studies, 62(6), 784-808.
97.Wu, J. H., and Wang, S. C. (2005), “What drives mobile commerce? An empirical evaluation of the revised technology acceptance model,” Information & Management, 42 (5), 719-729.
98.Yi, M. Y., Jackson, J. D., Park, J. S., and Probst, J. C. (2006), "Understanding information technology acceptance by individual professionals: Toward an integrative view," Information & Management, 43(3), 350-363.
99.Yu, J., Ha, I., Choi, M., and Rho, J. (2005), "Extending the TAM for a t-commerce," Information & Management, 42(7), 965-976.
100.Zhu, F. X., Wymer, W. Jr., and Chen, I. (2002), “IT-Based Services and Service Quality in Consumer Banking,” International Journal of Service Industry Management, 13(1), 69-90.
101.Pavlou, A. P. and Fygenson, M., “Understanding and Predicting Electronic Commerce Adoption: An Extension of the Theory of Planned Behavior," MIS Quarterly (30:1), 2006, pp. 115-143.
102.A. Parasuraman(2000), Technology readiness index (TRI): a multipleitem scale to measure readiness to embrace new technologies, Journal of Service Research 2 (4), 2000, pp. 307–320.
103.Shin-Yuan Hung, Chia-Ming Chang (2005) User acceptance of WAP services: test of competing theories Computer Standards & Interfaces 27,359–370
104.Rita Walczuch, Jos Lemmink , Sandra Streukens(2007),The effect of service employees’ technology readiness on technology acceptance, Information & Management 44 (2007) 206–215.
105.Paul Jen-Hwa Hu, Theodore H.K. Clarkb, Will W. Mab(2003), Examining technology acceptance by school teachers: a longitudinal study. Information & Management 41, 227–241
106.Vijayasarathy, L. R. (2004), "Predicting consumer intentions to use on-line shopping: the case for an augmented technology acceptance model," Information & Management, 41(6), 747-762.
107.Taylor, S., and Todd, P. (1995), “Understanding information technology usage: A test of competing models,” Information Systems Research, 6(2), 44-176.
108.Hsu, C. L., and Lin, J. C. C. (2008), "Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation," Information & Management, 45(1), 65-74.
109.Fu, J. R., Farn, C. K., and Chao, W. P. (2006), “Acceptance of Electronic Tax Filing: A study of Taxpayer Intentions,” Information & Management, 43(1), 109-126.
110.Hsu, C. L., and Lu, H. P. (2004), “Why do people play online games? An extended TAM with social influences and flow experience,” Information & Management, 41(7), 853–868.
111.Elizabeth E. Grandona, J. Michael Pearson(2004), Electronic commerce adoption: an empirical study of small and medium US businesses, Information & Management 42 197–216.
112.Ing-Long Wu, Jian-Liang Chen, (2005)An extension ofTrust and TAM model with TPB in the initial adoption ofon-line tax: An empirical study, Int. J. Human-Computer Studies 62, 784–808.
113.John R. Olson, Kenneth K. Boyer (2003), Factors influencing the utilization of Internet purchasing in small organizations, Journal of Operations Management 21 (2003) 225–245
114.Software Piracy in the Workplace: A Model and Empirical Test. By: Peace, A. Graham; Galletta, Dennis F.; Thong, James Y. L., Journal of Management Information Systems, Summer2003, Vol. 20 Issue 1, p153-177, 25p
115.Parasuraman, A., & Colby, C. (2003). Technology readiness (TR) andthe TR index (TRI).[On-line]. Available. Retrieved September 20,2004, from Available
116.Rockbridge Associates, Inc.(1999). The national technology readinesssurvey: 1999-executive summary. [On-line]. Available. Retrieved September 5, 2004, from http://www.rockresearch.com/Technology_Readiness/executive_summary/executive_summary.html.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top