跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佳瑩
研究生(外文):Chia-Ying Lin
論文名稱:應用免疫演算法於印刷配置問題之研究
論文名稱(外文):An immune algorithm for the printing problems
指導教授:謝益智謝益智引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:免疫演算法封面印刷問題標籤印刷問題混合型整數規劃非線性整數規劃
外文關鍵詞:Immune AlgorithmCover Printing ProblemLabel Printing ProblemMixed Integer Nonlinear ProgrammingNonlinear Integer Programming
相關次數:
  • 被引用被引用:4
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著市場環境快速的變遷,個人化的產品已在印刷市場中發展出另一個全新的契機,藉由少量多樣化的生產模式創造出更大的生產效益。對印刷產業而言,為了達到個人化生產之需求,需要考慮到諸多因素,例如印版之配置方式、印刷成本、印刷所需紙張數量、印版以及產品之尺寸等,在本研究中為了滿足不同消費者的訂購需求,將探討兩類印刷相關之問題,分別為封面印刷問題及標籤印刷問題,前者是屬於混合型整數規劃問題,後者則是屬於非線性整數規劃問題。
由於這兩類印刷問題的求解範圍非常廣闊,產品配置之可能性並非單一,本研究在第一個問題中為了降低印刷所耗用的成本,將以免疫演算法搜尋其配置方式,並結合Lp_solve求解其印刷所耗用的紙張數量,以達到印刷所耗用成本最低之目標;而第二個問題是為了減少印刷所造成的浪費,本研究將以免疫演算來搜尋每款標籤之配置位置,並利用數值分析決定其每款標籤之配置數量以及每一塊印版的印刷數量,以達到印版充分利用並減少多餘的標籤印製之目標。
在本研究中,我們利用免疫演算法測試過去文獻所提出之指標性問題,結果顯示均可求得其配置的位置以及印刷所需的印製數量,並且在最佳化的數值結果中可獲得多種組合。最後,我們將測試結果與過去所提出之相關文獻作比較,數值結果顯示,對於全部測試問題利用免疫演算法可獲得優於或相同於文獻的目前最佳解。
With the rapid changes of market, customized products have in the printing market and have earned more profits by using an efficient small size manufacturing. Many factors, such as the allocation of plates, printing costs, the number of printing copies and plates, as well as product size, are to be considered in printing industry so as to meet the individual needs of production In this study, we investigate two types of printing problems, including the cover printing problem and the label printing problem. The former is a mixed integer programming problem, while the latter is a nonlinear integer programming problem.
The feasible regions of these two types of printing problems are pretty large. In this study, we propose an immune algorithm combined with Lp_solve to solve the cover printing problem with the objective of minimizing the printing cost. For the label printing problem, we propose an immune algorithm to solve for the number of labels and their allocations so as to minimize the redundance percentage of printing papers.
Several benchmarks of test problems are solved by the proposed immune algorithm. Numerical results show that the proposed immune algorithm performs well for all test problems. Moreover, the proposed immune algorithm can obtain better solutions than those of well known best solutions in the literature.
中文摘要 ------------------------------------------------------------------------------- i
英文摘要 ------------------------------------------------------------------------------- ii
誌謝 ------------------------------------------------------------------------------- iii
目錄 ------------------------------------------------------------------------------- iv
表目錄 ------------------------------------------------------------------------------- vi
圖目錄 ------------------------------------------------------------------------------- vii
第一章 緒論------------------------------------------------------------------------- 1
1.1 研究背景------------------------------------------------------------------- 1
1.2 研究目的------------------------------------------------------------------- 2
1.3 研究方法與步驟---------------------------------------------------------- 3
1.4 論文架構------------------------------------------------------------------- 5
第二章 文獻探討------------------------------------------------------------------- 6
2.1 印刷問題------------------------------------------------------------------- 6
2.1.1 封面印刷問題------------------------------------------------------------- 10
2.1.2 標籤印刷問題------------------------------------------------------------- 12
2.2 免疫演算法---------------------------------------------------------------- 12
2.2.1 免疫系統介紹------------------------------------------------------------- 12
2.2.2 免疫演算法之步驟------------------------------------------------------- 19
第三章 研究方法------------------------------------------------------------------- 22
3.1 封面印刷問題------------------------------------------------------------- 22
3.1.1 問題描述------------------------------------------------------------------- 22
3.1.2 問題假設------------------------------------------------------------------- 23
3.1.3 數學模式與符號---------------------------------------------------------- 24
3.1.4 線性模式------------------------------------------------------------------- 25
3.1.5 例題說明------------------------------------------------------------------- 28
3.2 標籤印刷問題------------------------------------------------------------- 30
3.2.1 問題描述------------------------------------------------------------------- 30
3.2.2 問題假設------------------------------------------------------------------- 31
3.2.3 數學模式與符號---------------------------------------------------------- 32
3.2.4 例題說明------------------------------------------------------------------- 34
3.3 免疫演算法之編碼方式-------------------------------------------------- 35
3.3.1 封面印刷問題------------------------------------------------------------- 36
3.3.2 標籤印刷問題------------------------------------------------------------- 40
3.4 適應函數之架構---------------------------------------------------------- 42
3.4.1 封面印刷問題------------------------------------------------------------- 42
3.4.2 標籤印刷問題------------------------------------------------------------- 44
第四章 測試結果與討論---------------------------------------------------------- 47
4.1 封面印刷問題------------------------------------------------------------- 47
4.1.1 測試問題------------------------------------------------------------------- 47
4.1.2 參數設定------------------------------------------------------------------- 48
4.1.3 測試結果與分析---------------------------------------------------------- 48
4.2 標籤印刷問題------------------------------------------------------------- 56
4.2.1 測試問題------------------------------------------------------------------- 56
4.2.2 參數設定------------------------------------------------------------------- 57
4.2.3 測試結果與分析---------------------------------------------------------- 57
第五章 結論與未來研究方向---------------------------------------------------- 60
5.1 結論------------------------------------------------------------------------- 60
5.2 未來研究方向------------------------------------------------------------- 60
參考文獻 -------------------------------------------------------------------------------- 61
附錄一 固定印版數量之CPP測試結果------------------------------------------ 65
附錄二 不固定印版數量之CPP測試結果--------------------------------------- 89
附錄三 LPP之測試結果------------------------------------------------------------ 92
1.李天任 (1995),「印前作業的電腦化時代」,印刷與設計雜誌,81期,48-49頁。
2.李興才、羅福林(1997),印刷工業概論,中國文化大學出版部,頁436,台北。
3.林行健 (1999),印刷設計概論,視傳文化事業有限公司,1-14頁,台北縣。
4.財團法人印刷工業技術研究中心(2007),「印刷及轉助業」,成果彙編,15-19頁,台北縣。
5.許瀛鑑 (1992),「21世紀台灣之印刷工業走向」,工業職業教育雙月刊,10卷,5期,頁5-11。
6.陳靜慧 (2003),應用類免疫演算法於串並聯系統複置分配最佳化問題之研究,長榮大學,碩士論文。
7.黃維 (2005),以類免疫系統法建置垃圾郵件過濾系統之研究,中原大學,碩士論文。
8.經濟部技術處 (1999),「印刷產業技術發展策略」,特定生產業技術發展策略規劃報告,台北。
9.鄒毓俊 (2001),印刷概論,化學工業出版社,中國武漢。
10.蔡佳陽 (1994),「將服務業的觀念應用於印刷業之探討」,中華印刷科技年報,頁389-397。
11.鄧宏安 (2002),整合CFDRC 及類免疫演算法於散熱片之最佳化設計,大同大學,碩士論文。
12.羅意茹 (2004),應用免疫演算法於可控退化率存貨問題之研究,國立嘉義大學,碩士論文。
13.Bentley, P.J. and Come, D.W. (2001). Creative Evolutionary Systems, Morgan Kaufmann Pub.
14.Borchers, B. and Mitchell, J.E. (1994). “An improved branch-and-bound algorithm for mixed integer nonlinear programming”, Computers and Operations Research, vol. 21, pp. 359-367.

15.Cao, D. and Chen, M. (2006). “Capacitated plant selection in a decentralized manufacturing environment: a bilevel optimization approach”, Operational Research, vol. 169(1), pp. 97-110.
16.Carrein, C. (1994). “Problème du mariage des couvertures par la méthode tabou. Dissertation”, Faculté Polytechnique de Mons, Dissertation.
17.Castro, D., Von, L.N. and Zuben, F.J. (2000). “The Clonal Selection Algorithm with Engineering Application”, Proceedings of The Genetic and Evolutionary Computation Conference, vol. 1, pp. 36-37.
18.Castro, L.N. and Von Zuben, F.J. (1999). “Artificial immune systems: part I - basic theory and applications”, Technical Report – RT DCA 01/99, pp. 1-95.
19.Chabane, Y. (2006). Elaboration d''un contrôleur adaptatif pour un robot mobile basé sur les réseaux immunitaires artificiels, Université Saad Dahlab, Dissertation.
20.Chen, T.C. and Hsieh, Y.C. (2008). “Using immune-based genetic algorithms for single trader’s periodic marketing problem”, Mathematical and Computer Modelling , vol. 48 , pp. 420-428.
21.Dasgupta, D. and Attoh-Okine, N.(1997).“Immunity-based systems:A survey”, Proceeding of the IEEE Transactions on Systems, Man and Cybernetics, vol. 1, pp. 369-374.
22.De Castro, L.N. and Von Zuben, F.J. (2000). “The Clonal Selection Algorithm with Engineering Applications”, In Workshop Proceedings of the GECCO 200, pp. 36-37.
23.Dote, Y. (1998). “Soft Computing (Immune Networks) in Artificial Intelligence”, Proceeding of the IEEE Transactions on Systems, vol. 2, pp. 1382-1387.
24.Eberhart, R.C. and Shi, Y. (1998). Comparison between genetic algorithms and particle swarm optimization, Proceedings of the Seventh annual Conference on Evolutionary Programming, Springer Verlag, pp. 611-618.
25.Elaoud, S., Teghem, J. and Bouaziz, B. (2007). “Genetic algorithms to solve the cover printing problem”, Computers & Operations Research, vol. 34, pp. 3346-3361.

26.El-Araby, E.E., Yorino, N. and Sasaki, H. (2003). “A two level hybrid GA/SLP for FACTS allocation problem considering voltage security”, Electrical Power and Energy Systems, vol. 25, pp. 327-335.
27.Fasbender, G. (2000). A branch & price algorithm for the book cover printing problem. Université Libre de Bruxelles, Dissertation.
28.Fletcher, R. and Leyffer, S. (1998). “Numerical experience with lower bounds for miqp branch-and-bound”, SIAM Journal on Optimization, vol. 8, pp. 604-616.
29.Hunt, J.E. and Cooke, D.E. (1996). “Learning using an artificial immune system”, Network and Computer Applications, vol. 19, pp. 189-212.
30.Jerne, N.K. (1973). “The immune system”, Scientific America, vol. 229(1), pp. 52-60.
31.Kirkpatrick, S., Gelatt Jr., C.D. and Vecchi, M.P. (1983). “Optimization by simulated annealing”, Science, vol. 220, pp. 671-680.
32.Laguna, M., Kelly, J.P., Gonzalez-Velarde J.L. and Glover, F. (1995). “Tabu search for the multilevel generalized assignment problem”, European Journal of Operational Research, vol. 82, pp. 176-189.
33.Leandro, 2002, “http://www.dca.fee.unicamp.br/~lnunes/immune.html”.
34.Leyffer, S. (2001). “Integrating SQP and branch-and-bound for mixed integer nonlinear”, Computational Optimization and Applications, vol.18, pp. 295-309.
35.Li, H.L. (1994). “Global optimization for mixed 0-1 programs with convex or separable continuous functions”, Journal of the Operational Research Society, vol. 45(9), pp. 1068-1076.
36.Michalewicz, Z. (1996), Genetic algorithms + data structures = evolution programs, 3th Edition, Springer-Verlag Berlin, Heidelberg.
37.Min, L. and Cheng, W. (1999). “A genetic algorithm for minimizing the makespan in the case of scheduling identical parallel machines”, Artificial Intelligence in Engineering, vol. 13(4), pp. 399-403.
38.Mitsumoto, N., Fukuda, T. and Arai, F. (1994). “The Immune Mechanism, Adaption, Learning for the Multi Agent System”, IEEE symp on Emerging Technologies and Factory Automation.
39.Naya, M. (1990). Problème de mariage des couvertures posé par la S.A Casterman. Belgium: Faculté Polytechnique de Mons, Dissertation.
40.Pintaric, Z.N. and Kravanja, Z. (2000). “The two-level strategy for MINLP synthesis of process flowsheets under uncertainty”, Computers and Chemical Engineering, vol. 24, pp. 195-201.
41.Roitt, I., Brostoff, J. and Male, D. (1998). Immunilogy, 5/e, Original English edition Copyright Mosby International Ltd.
42.Sandgren, E. (1990). “Nonlinear integer and discrete programming in mechanical design optimization”, Mechanical Design, vol. 112, pp. 223-229.
43.Skorin-Kapov, J. (1990). “Tabu search applied to the quadratic assignment problem”, ORSA Journal on Computing, vol. 2, pp.33-45.
44.Taillard, E. (1991). “Robust tabu search for the quadratic assignment problem”, Parallel Computing, vol. 17, pp. 443-455.
45.Tazawa, I., Koakutsu, S. and Hirata, H. (1996), “An immunity based genetic algorithm and its application to the VLSI floorplan design problem”, Proceeding of IEEE International Conference on Evolutionary Computation, pp. 417-421.
46.Teghem, J., Pirlot, M. and Antoniadis, C. (1995). “Embedding of linear programming in simulated annealing for solving a mixed integer production planning problem”, Computational and Applied Mathematics, vol. 64, pp. 91-102.
47.The University of Arizona, (2000). The Biology Project -Immunology Problem Set.
48.Vose, M.D. (1998). The Simple Genetic Algorithm: Foundations and Theory. MIT Press, USA.
49.Weissman, I. L. and Cooper, M.D. (1993). “How the immune system develops”, Scientific American, vol. 269,no. 3, pp. 33-40,
50.Yiu, K.F.C., Mak, M.L. and Lau, H.Y.K. (2007). “A heuristic for the label printing problem”, Computers & Operations Research , vol. 34 , pp. 2576-2588.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top