跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 12:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施汶岳
研究生(外文):wun-yue shih
論文名稱:以不同陽極處理液製備二氧化鈦奈米管及其應用之研究
論文名稱(外文):Study of TiO2 Nanotube Prepared by Different Electrolyte of Anodic and its applications
指導教授:閔庭輝
指導教授(外文):Teen-Hang Meen
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:85
中文關鍵詞:陽極處理二氧化鈦奈米管染料敏化太陽能電池
外文關鍵詞:Anodic Titanium OxideTiO2 nanotubeDye-sensitized solar cell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究將以陽極處理法,製作出高規則性分佈及高表面積之二氧化鈦奈米管(TiO2 nanotube)陣列,並應用於染料敏化太陽能電池(dye-snesitized solar cell, DSSC)之光電極,研究結構差異對於光電轉換效率之影響。我們以2種不同鍍膜方式各獲得表面粗糙度為37.81nm與113.4nm,經陽極處理後發現表面粗糙度較小能獲得較均勻的奈米管結構。陽極處理實驗過程使用甲醇、去離子水、乙二醇等不同溶劑,混合氫氟酸與氟化銨作為陽極處理液,研究不同溶劑作為陽極處理液與陽極處理液中水含量對於結構及電池轉換效率之影響。根據場發射電子顯微鏡(FESEM)的觀察,在外加偏壓15V時,陽極處理液為甲醇、去離子水、乙二醇獲得孔洞直徑約20到37奈米,管長約249到677奈米。而在固定氟離子含量及外加偏壓的條件下,改變陽極處理液中水含量能獲得不同的奈米管結構,並且隨著陽極處理液中水含量的增加,奈米管管徑誤差上升、結構均勻性將下降,管徑由水含量10vol%時的±2nm提高到含水量50vol%時的±17nm,當完全以去離子水做為陽極處理液時誤差則提高到±18nm。實驗過程中發現當陽極處理液中水含量超過50wt%時,電流密度將會大幅增加而難以控制,不穩定的電流造成不均勻的電荷分佈進而影響結構的成長與穩定性。而提高電壓將加速薄膜氧化與蝕刻的速率,能獲得更大的奈米管尺寸,管徑與管長將分別提高至100與767奈米。在光電轉換效率分方面隨著水含量的提高所造成的結構不穩定亦影響到染料吸附量與均勻性,使光電流的差異因含水量的增加而變化,因此元件效率的重現性也隨之下降。以甲醇或去離子水做為陽極處理液所獲的管長最長約350奈米,以乙二醇做為陽極處理液能獲得較長的管長約700奈米,而管長較長能有較大的表面積能提供更多的染料吸附,因此能獲得較高的光電轉換效率。
In this present work, highly ordered and large surface area TiO2 nanotube arrays structure were prepared by anodic titanium oxide (ATO) method for the fabrication of the photoelectrode of the dye-sensitized solar cell(DSSC).
Here, we focused on the discussion of cell efficiency for different solvent with water-base, Methanol-base and ethylene glycol-base composed of hydrofluoric acid (HF) or ammonium fluoride (NH4F).The TiO2 nanotubes were grow by anodization in different electrolytes at different potential between 15V and 60V, average pores diameter of 20nm to 100nm, whereas tubes length were 133nm to 767nm as observed by FESEM. In this process, for a fixed concentration and anodization potential, different tube structure could be produced by controlling the water contain of electrolyte. The influence of water content in the electrolyte on the fabrication of TiO2 nanotubes were investigated, when the ratio of water to solvent increase over then 50wt%, it was difficult to produce uniform nanotubes and the current density was hard to control precisely. Much higher current density and current fluctuation were observed in the water-base electrolyte than in the alcohol-base electrolyte. We conjectured that higher diffusivity and concentration of ions in the water-base electrolyte. Therefore, different efficiency was present under different water content, because it impacts the property of TiO2 nanotubes and the amount of dye loading.
中文摘要................................................i
英文摘要................................................ii
致謝....................................................iii
目錄....................................................iv
表目錄..................................................vii
圖目錄..................................................viii
第一章 緒論............................................1
1.1 前言............................................1
1.2 研究動機........................................2
第二章 文獻回顧與理論基礎..............................5
2.1薄膜沉積與薄膜結構...........................5
2.2二氧化鈦的基本性質...........................7
2.3染料敏化太陽能電池(Dye-sensitized solar cell, DSSC) ...................................................11
2.3.1染料敏化太陽能電池結構.....................13
2.3.2染料敏化太陽能電池工作原理.................18
2.3.3染料敏化太陽能電池之等效電路...............23
2.4二氧化鈦奈米管的製備.........................25
2.4.1陽極處理與奈米管的形成機制..........................25
2.4.2極化現象...................................29
第三章 實驗方法與儀器原理..............................30
3.1藥品器材與實驗設備...........................30
3.2陽極處理.....................................32
3.2.1鈦薄膜製備.................................32
3.2.2陽極處理液之調配...........................33
3.2.3奈米管製備.................................34
3.2.4退火處裡...................................37
3.3染料敏化太陽能電池之製備.....................37
3.3.1背電極之製備...............................38
3.3.2電解液調配.................................38
3.3.3 敏化劑調配................................40
3.3.4電池封裝...................................40
3.3.5效率量測...................................42
3.4儀器原理與應用...............................42
3.4.1場發射掃描式電子顯微鏡(Field-emission scanning electron microscope,FESEM) ....................42
3.4.2 X光繞射儀(X-ray diffraction) .............42
3.4.3紫外光及可見光吸收光譜儀(UV-visible) ......43
第四章 結果與討論......................................44
4.1二氧化鈦奈米管結構分析.......................44
4.1.1鈦薄膜品質對結構之影響.....................44
4.1.2陽極處理液對結構之影響.....................45
4.1.3陽極處理液含水量對結構之影響...............48
4.1.4陽極處理時間對結構之影響...................53
4.1.5陽極處理電壓對結構之影響...................62
4.1.6陽極處理電流對時間曲線分析.................66
4.2紫外光及可見光吸收光譜分析...................70
4.3X光繞射量測分析..............................71
4.4染料敏化太陽能電池光電轉換效率量測...........72
第五章 結論............................................77
參考文獻.................................................80
附錄.....................................................83
Extended Abstract........................................83
[1]D. M. Chapin, C. S. Fuller and G. L. pearson, J. Appl. Phys, 25, 676, 1954.
[2]Michael Grätzel, Nature, 414, 338, 2001.
[3]P. Hoyer, Langmuir. 12,1411, 1996.
[4]Guoge Zhang, Haitao Huang, Yihe Zhang, Helen L.W. Chan, Limin Zhou, Electrochemistry Communications, 9, 2854, 2007.
[5]V.M. Prida, E. Manova, V. Vega, M. Hernandez-Velez, P. Aranda, K.R. Pirota, M. Va’ zquez, E. Ruiz-Hitzky, Journal of Magnetism and Magnetic Materials 316,110, 2007.
[6]Daibin Kuang, Je´ re´mie Brillet, Peter Chen, Masakazu Takata, Satoshi Uchida, Hidetoshi Miura, Kohichi Sumioka, Shaik. M. Zakeeruddin, and Michael Gra¨ tzel, ACS, nano, vol2, no6, 1113, 2008.
[7]James R. Jennings, Andrei Ghicov, Laurence M. Peter, Patrik Schmuki, and Alison B. Walker, J. AM. CHEM. SOC., 130, 13364, 2008.
[8]Shankar, K., Mor, G. K., Prakasam, H. E., Yoriya, S., Paulose,M., Varghese, O. K., Grimes, C. A. Nanotechnology, 18, 065707, 2007.
[9]薄膜技術與薄膜材料,田民波,五南出版, 2007.
[10]S. Uchida, R. Chiba, M. Tomiha, N. Masaki, M. Shirai, Electrochemistry, 70, 418, 2002.
[11]M. Adachi, Y. Murata, I. Okada, Y. Yoshikawa, J. Electrochem. Soc. 150, G488, 2003.
[12]G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 6,215, 2006.
[13]M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, B. Hardin, C.A. Grimes, Nanotechnology 17,1, 2006.
[14]R. L. Kurtz, R. Stockbauer, T. E. Maday, E. Roman, J. L. de Segovia, Surf.Sci.218,178, 1989.
[15]Ulrike D. Surf. Sci. Rep. 48, 53, 2003.
[16]K. M. Reddy, S. V. Manorama, A. R. Reddy﹐Mater. Chem., Phy. 78﹐239, 2002.
[17]K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras﹐Langmuir 20﹐2900, 2004.
[18]S.Iijima, Nature 354, 56, 1991.
[19]B.B.Lakshmi, C.J.Patrissi, C.R.Martin, Chem. Matr. 9, 2544, 1997.
[20]劉茂煌﹐奈米光電池﹐工業材料雜誌 203 期, 93, 2003.
[21]Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P.Liska, N.Vlachopoulos, V.Shklover, Christian-H.Fischer, M.Gratzel﹐Inog. Chem. 38﹐6298, 1999.
[22]Argazzi R. et al.﹐Inorg. Chem. 33﹐5741, 1994.
[23]Finnie K., Bartlett J., Woolfrey J.﹐Langmuir 14﹐2744, 1998.
[24]Nazeeruddin Md. et al.﹐Langmuir 16﹐8525, 2000.
[25]Murakoshi K et al.﹐J.Electroanal. Chem. 396, 27, 1995.
[26]M. Grätzel, M. K., A., L. Sol. Energy Mater. Sol. Cell, 99, 1996.
[27]Sapp, S. A. E., C. M., Contado, C., Caramori, S., Bignozzi, C. A., J. Am.Chem. Soc, 124,11215, 2002.
[28]Kristofer Fredin, Studies of Charge Transport Processes in Dye-Sensitized Solar Cells.
[29]Li Wang, Shibi Fang, Yuan Lin, Xiaowen Zhou and Miyu Li, Chem. Commun., 5687,2005.
[30]M. Grätzel, Nature, 414, 338, 2001.
[31]M. Grätzel, J. Photochem., Photobio. A:Chem., 164, 3, 2004.
[32]A. Hagfeldt, M. Grätzel, Chem. Rev., 95, 49, 1995.
[33]K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev. , 177﹐347, 1998.
[34]M. Grätzel﹐Current Opinion in Colloid and Interface Science, 4, 314, 1999.
[35]Cahen et al.﹐J.Phys.Chem. B, 104,2053, 2000.
[36]A. Fujishima et al., Sol. Energy Mater. Sol. Cells, 81, 197, 2004.
[37]L. Brus, Phys. Rev. B , 53, 4649, 1996.
[38]Cahen et al., J. Phys. Chem. B , 104, 2053, 2000.
[39]J. Bisquert, J. Phys. Chem. B﹐106﹐325, 2002.
[40]Dae-Jin Yanga, Hun Parka, Seong-Je Choa, Ho-Gi Kima, Won-Youl Choib, Journal of Physics and Chemistry of Solids, 69, 1272, 2008.
[41]Liyuan Han , Naoki Koide,Yasuo Chiba, Ashraful Islam, Takehito Mitate, C. R. Chimie, 9, 645, 2006.
[42]蔡進譯, 超高效率太陽電池-從愛因斯坦的光電效應談起,物理雙月刊, 27卷5期, 2005年10月.
[43]T. Ohtsuka, N. Nomura, Corros. Sci., 39, 1253, 1997.
[44]Y. T. Sul, C. B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, and T. Albrektsson, Biomaterials, 23, 491, 2002.
[45]D. J. Blackwood, L. M. Peter, 33, 1143 , 1988.
[46]Jan M. Maca’k, Hiroaki Tsuchiya, Andrej Ghicov, Patrik Schmuki, Electrochemistry Communications, 7, 1133, 2005.
[47]Chuanmin Ruan, Maggie Paulose, Oomman K. Varghese, Craig A. Grimes, Solar Energy Materials & Solar Cells, 90, 1283, 2006.
[48]Jianling Zhao, Xiaohui Wang, Renzheng Chen, Longtu Li, Solid State Communications 134 , 705, 2005.
[49]Andrei Ghicov, Jan M. Macak , Hiroaki Tsuchiya , Julia Kunze, Volker Haeublein , Sebastian Kleber , Patrik Schmuki , Chemical Physics Letters 419, 426, 2006.
[50]I. Sanghi, S. Visvanathan, Electrochim. Acta., 7, 567, 1962.
[51]Lj. D. Arsov, C. Kormann, W. Plieth, J. Electrochem. Soc., 138, 32964 , 1991.
[52]楊于紹,陽極氧化法制備奈米二氧化鈦薄膜之研究,國立中興大學材料工程研究所碩士論文,2001.
[53]Gopal K. Mor, Oomman K. Varghese, Maggie Paulose, Karthik Shankar, Craig A. Grimes, Solar Energy Materials & Solar Cells, 90, 2011, 2006.
[54]K.S. Raja, M. Misra, K. Paramguru , Electrochimica Acta, 51, 154, 2005.
[55]Satoshi Kaneco, Yongsheng Chen, Paul Westerhoff, John C. Crittenden, Scripta Materialia, 56, 373, 2007.
[56]Gopal K. Mor, Oomman K. Varghese, Maggie Paulose, Karthik Shankar, Craig A. Grimes, Solar Energy Materials & Solar Cells, 90, 2011, 2006.
[57]C. Jia, E. Xie, A. Peng, R. J., Fan Ye, H. Lin , T. Xu, Thin Solid Films, 496, 42, 2006.
[58]Satoshi Kanecoa, Yongsheng Chena, Paul Westerhoffa, John C. Crittenden, Scripta Materialia, 56, 373, 2007.
[59]Craig A. Grimes, J. Mater. Chem., 17, 1451, 2007.
[60]Seigo Ito, Takurou N. Murakami, Pascal Comte, Paul Liska, Carole Grätze, Mohammad K. Nazeeruddin, Michael Grätze, Thin Solid Films, 516, 4613, 2008.
[61]A. Valota, D.J. LeClere, P. Skeldon, M. Curioni, T. Hashimoto, S. Berger, J. Kunze, P. Schmuki, G.E. Thompson, Electrochimica Acta, 54, 4321, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊