跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 02:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李爵宇
研究生(外文):Chueh-Yu Li
論文名稱:利用共振腔擾動技術量測微波頻率下薄膜之介電性質
論文名稱(外文):Microwave Dielectric Properties Measurements of Thin Film by the Cavity Perturbation Technique
指導教授:沈自
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:75
中文關鍵詞:微波薄膜介電性質
外文關鍵詞:MicrowaveThin FilmDielectric Properties
相關次數:
  • 被引用被引用:5
  • 點閱點閱:509
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本論文提供一種利用微波共振腔擾動技術來量測薄膜樣品之介電常數與介電損耗的方法。所使用之共振腔為利用標準之WR-90銅製X-band波導管(頻段為8.2-12.4 GHz ,長度為13.5 cm)所製成。薄膜樣品的製作是利用半導體製程中的射頻磁控濺鍍系統所沉積。將沉積薄膜之基板切成小尺寸,量測所濺鍍之材料的介電常數與介電損耗。薄膜材質為具有高介電常數之二氧化鈦( TiO2 )。文中將介紹利用共振腔擾動技術量測薄膜介電性質的方法及優缺點,以及研究最適合此量測方法的介電質薄膜的製程參數。
目前在微波通訊系統元件都朝向體積小、重量輕的目標前進,因此縮小元件尺寸是未來趨勢,平面型的厚膜或薄膜元件則具有以上優點,而應用於微波電路的被動元件都是以高品質之介電陶瓷材料為主,並常以高介電常數材料的薄膜當作微波電路系統的一部份,例如薄膜電容器。
本研究所採用之薄膜技術為反應性射頻磁控濺鍍法,以其具有製程溫度低、薄膜的附著力及均勻性佳、沉積速率快…等優點,亦可利用其製程條件的調變,獲得高品質的薄膜。採用之基板為硼矽酸玻璃。本實驗在探討利用共振腔擾動技術量測利用反應性射頻磁控濺鍍法所沉積於玻璃基板上二氧化鈦薄膜微波之介電性質。
為了確保薄膜之品質,我們將利用掃描式電子顯微鏡( Scanning Electron Microscopy,SEM )觀察薄膜的表面結構與平整度;X光繞射儀( X-Ray Diffraction,XRD )用來分析薄膜之晶向排列與排向,以決定薄膜沉積的最佳參數。膜厚則用表面輪廓儀( stylus profiler,α-step )測得。
共振腔擾動技術它的優點是介電常數與介電損耗計算公式和量測方法非常簡單。共振腔擾動技術的基本概念,是在共振腔中置入一小片的介電質樣品,此樣品會引起共振頻率的偏移和降低共振腔的品質因數,由此計算樣品之介電常數與介電損耗。
共振腔擾動技術的量測的缺點是量測介電損耗值的誤差較大,主要是因為整個空腔與薄膜的體積比很大,造成共振頻率和品質因數的偏移量太小,很容易造成量測上與實際值的差異。未來實驗方向會以增加量測樣品的薄膜之厚度與面積以提高測量之準確度。
A cavity perturbation method will be adopted in this research to measure the microwave complex permittivity of thin films. A X-band cavity fabricated by the standard WR-90 copper waveguide with length 13.5 cm was used for measurement. Thin films were deposited by the RF reactive magnetron sputtering method and the deposited substracts were cut to pieces for measurement. The thin film material is TiO2, which has a high dielectric constant. In this thesis, we will introduce the advantages and disadvantages of cavity perturbation technique for measuring the dielectric properties of thin films. The most adequate experimental parameters of deposition of thin films to be measured will also be studied.
The current trends of the microelectronics are toward small volume and light weight. The plane thick and thin film devices includes all of the advantages described previously. The application of the microwave passive devices are mainly consisted of high quality ceramic dielectric materials, and often contains high dielectric constant thin films as part of microelectronics, such as thin film capacitors.
The choice of RF reactive magnetron sputtering method in this research is due to the advantages of low temperature growth, good adhesion, uniform thickness, and high deposition rates. In addition, high quality thin films can be achieved by changing deposition parameters. This article investigates the dielectric properties of TiO2 thin films deposited on borosilicate glass substrates by RF reactive magnetron sputtering by the cavity perturbation technique.
The film structure will be analyzed by the ultrahigh resolution scanning electron microscope and X-ray diffraction. The thickness of the films was measured using a stylus profiler.
The cavity perturbation technique has the great advantages of convenient experimental measurement, small sample dimension, and simple computation formulas. The fundamental concept of caivty perturbation technique is that the presence of a small piece of dielectric sample in the resonant cavity will cause a shift of resonant frequency and a decrease of the quality factor of the cavity.
The measurement uncertainties are quite high of the dielectric properties of thin films. The main reason is because of the very small volumes of films which caused the changes of resonant frequencies and quality factors of the cavity too small to have enough certainties in measurements. To improvement the measurement accuracy, a thicker film or larger film volume is preferred.
中文摘要...................................................i
英文摘要..................................................ii
誌 謝....................................................iii
目 錄.....................................................iv
圖目錄....................................................vi
表目錄..................................................viii
第一章 簡 介...............................................1
1.1 研究目的...............................................1
1.2 二氧化鈦( TiO2 )薄膜...................................2
1.3 研究方法...............................................3
第二章 理論分析............................................6
2.1 介電理論...............................................6
2.2 量測技術...............................................8
2.2.1 介質共振技術.........................................8
2.2.2 共振腔擾動技術......................................10
2.3 薄膜製程..............................................12
2.3.1 電子束蒸鍍..........................................13
2.3.2 化學氣相沉積( CVD ).................................13
2.3.3 反應性射頻磁控濺鍍..................................14
第三章 實驗步驟...........................................21
3.1 定義共振頻率..........................................21
3.2 基板清洗..............................................21
3.3 薄膜沉積..............................................22
3.4 薄膜分析..............................................24
3.4.1 校正樣品............................................24
3.4.2 網路分析儀( Vector network analyzer,VNA )...........25
3.4.3 X光繞射儀( X-ray diffraction,XRD )..................25
3.4.4 掃描式電子顯微鏡( Scanning electron microscopy,SEM )..........................................26
3.4.5 表面輪廓儀( Stylus profiler, α-step )..............27
第四章 結果與討論.........................................33
4.1 尋找最佳濺鍍條件......................................33
4.2 膜厚的影響............................................36
第五章 結論...............................................68
參考文獻..................................................70
英文論文大綱..............................................72
簡 歷.....................................................75
[1]Yuan-Bin Chen, Cheng-Liang Huang, "Properties of MgTiO3 thin films prepared by RF magnetron sputtering for microwave application", Journal of Crystal Growth., vol. 282, no. 3-4, p. 482-489, 2005.
[2]翁敏航,"射頻被動元件設計",東華書局,1996年9月。
[3]羅志緯,"於鈦/矽基材上成長含氮二氧化鈦薄膜及其作為光觸媒之材料及性質研究",國立台灣科技大學化學工程系碩士論文,2006年7月。
[4]高濂、鄭珊、張青紅,"奈米光觸媒",五南圖書出版公司,2004年4月。
[5]D.Pamu, K.Sudheendran, M.Ghanashyam Krishna, K.C. James Raju, Anil K. Bhatnagar, "Microwave dielectric behavior of nanocrystalline titanium dioxide thin films", Vacuum , vol. 81, no. 5, p. 686-694, 2007.
[6]楊茹媛,"高介電材料之薄膜製備與微波量測及其在微波濾波元件之應用",國立成功大學微電子工程研究所博士論文,2007年1月。
[7]M.J. Dalberth, R.E. Stauber, J.C. Price, C.T. Rogers, "Imporved low frequency and microwave dielectric response in strontium titanate thin films growth by pulsed laser ablation", Appl. Phys. Lett, vol. 72, no. 4,p. 507-509, 1998.
[8]Jyh Sheen, "A modified field model of waveguide reflection dielectric resonator for microwave measurements of dielectric properties", J. Appl. Phys., vol. 103, no. 3, p. 034117, 2008.
[9]Jyh Sheen, "Study of microwave dielectric properties measurements by various resonance techniques", Measurement , vol. 37 , no. 2 , p. 123-130 , 2005.
[10]Anjali Verma, Dinesh C. Dube. "Measurement of Dielectric Parameters of Small Samples at X-Band Frequencies by Cavity Perturbation Technique", IEEE Trans. Instrumentations and Measurement, vol. 54, no. 5, p. 2120-2122, 2005.
[11]HONG XIAO 著,羅正忠、張鼎張 譯,"半導體製程技術導論",歐亞書局有限公司,2002年1月。
[12]羅吉宗,"薄膜科技與應用",全華科技圖書股份有限公司,2005年12月。
[13]林國棟,"射頻磁控濺鍍TiO2電容器之研究",國立清華大學材料科學工程學系碩士論文,2001年6月。
[14]David M. Pozar 著,郭仁財 譯,"微波工程",高立圖書有限公司,2006年4月。
[15]Dwi Wicaksana, Akihiko Kobayashi, Akira Kinbara, "Process effects on structural properties of TiO2 thin films by reactive sputtering", J. Vac. Sci. Technol. A, vol. 10, no. 4, p1479-1482.
[16]L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, S. Tanemura, "Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering", Applied Surface Science ,vol. 212-213, p 255-263.
[17]R. B. van Dover, "Amorphous lanthanide-doped TiOx dielectric films", Appl. Phys. Letters , vol. 74, no. 20, p. 3041-3043,1999
[18]H. Ohsaki, Y. Shibayama, N. Yoshida, T. Watanabe, S. Kanemaru, "Room-temperature crystallization of amorphous films by RF plasma treatment", Thin Solid Films, vol. 517, no. 10, p.3092-3095.
[19]Yanming Shen, Hua Yu, Jianke Yao, Shuying Shao, Zhengxiu Fan, Hongbo He, Jianda Shao, "Investigation on properties of TiO2 thin films deposited at different oxygen pressures", Optics & Laser Technology, vol. 40, no. 3, p.550-554.
[20]J. V. Grahn, M. Linder, "In situ growth of evaporated TiO2 thin films using oxygen radicals: Effect of deposition temperature", J. Vac. Sci. Technol. A, vol. 16,no. 4, p. 2495-2500.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊