跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 22:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪佐文
研究生(外文):Zuo-Wen Hong
論文名稱:利用混合定律量測微波介電特性之研究
論文名稱(外文):Study of Measurements of Microwave Dielectric Properties by the Mixture Rules
指導教授:沈自
指導教授(外文):Jyh Sheen
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:66
中文關鍵詞:微波介電常數混合定律複合材料
外文關鍵詞:microwavedielectric constantmixture rulescomposites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文將探討不同比例之陶瓷粉末分佈在聚乙烯物質中形成的複合材料(composite materials)之微波介電特性。使用之陶瓷材料為NPO-20M和NPO-37M兩種商業陶瓷粉末其介電常數值分別為20和36,而Q×f~50000(1GHz),使用之基質材料為PE粉末,其介電常數為2.32。

複合材料之製作程序為將一定比例之陶瓷粉末參雜於PE粉末中,並加入氧化鋯球與酒精一起置於塑膠罐內在球磨機上混合研磨。之後取出氧化鋯球再將混合物倒入燒杯中放到攪拌器攪拌然後於烘箱中烘乾酒精,烘乾之後再將混合粉末取出倒於設計好的鋼模內,再加熱壓模形成柱狀之介質共振器形狀。根據電磁理論,電磁波由一介質入射至介電係數不同的另一介質的時候,會因介電係數的改變而發生部份反射及部份穿透的情形,當介電常數遠大於最小單位時,電磁波大部分都會被限制在這範圍內形成駐波。以此原理可以形成我們所謂的介質共振器(DR)。微波介電性質之量測方法為利用柱狀共振技術(Post Resonance Technique),此量測技術對介電共振器材料在介電常數之量測上具有相當良好之準確度。

以NPO-20M和NPO-37M所製成之複合材料,其所量測之介電性質將與不同之混合定律的理論值來作一個分析比較,並將利用這些混合定理估計出100%純陶瓷材料的介電常數值。文章中亦將對現存之混合定律做一概略性的分析介紹,而不同混合定律的理論誤差也會再此作一個探討。並找出最適合的混合定律去估算純陶瓷粉末的介電常數。

除了介質共振器量測方法之外,由於微波介電共振器具有適當的介電係數、低溫度係數和低介電損失,使得微波介電共振器被廣泛的應用在微波通訊元件上。因此對於微波介電共振器與傳輸線之間的耦合等效電路的應用方面以及介電質振盪器的模擬亦將會作一個探討。
This thesis will study the microwave dielectric properties of composite material, which is made by dispersed ceramic powders in polyethylene matrix material with various concentrations of composite materials. Two commercial ceramics powders of NPO-20M and NPO-37M with the dielectric constants of 20 and 36,respectively, and Q×f~50000(1GHz) are chosen. The matrix material is the PE powder and dielectric constant is 2.32.

Ceramic powder mixed in a certain proportion of PE powder with the ZrO2 ball and the alcohol is put in a plastic jar by ball milling. After taking out the ZrO2 ball and pouring the mixture into the beaker for mixer agitation, the powder is then dried in the oven to obtain the composite powder. The dried powder was the put in a cylindrical die with designed dimensions and the die was re-heated to form the shape of dielectric resonator.

According to electromagnetic theory, electromagnetic wave from a medium incidence to another dielectric with different dielectric constant because of the dielectric coefficient change, will have the partial reflection and the partial penetration situation. For dielectric constant much larger than unit, the majority of electromagnetic wave will be limited in the dielectric to form the standing wave. The so-called dielectric resonators (DR) in formed for measurements. The measurement method of microwave dielectric properties is the post resonance technique. This measurement technology has very good accuracy on the dielectric constant measurement in dielectric resonator material.

The measured dielectric properties of composite material will be compared with different mixture laws and those mixture laws will be used to estimate dielectric constant values of the 100% pure ceramic materials. The article also summarize for the existing mixture laws, discuss the theoretical error of various mixture laws, and discover suitably mixture rules to estimate the dielectric constant of pure ceramic powder.

In addition to the dielectric resonator measurement method, due to the appropriate dielectric coefficient, low temperature coefficient and low dielectric loss, dielectric resonators are also widely used in microwave communication components. Therefore, the coupling between microwave dielectric resonator and the transmission line equivalent circuit, as well as the application of dielectric oscillator for the simulation will also be studied in the thesis.
中文摘要……………………………………………………………I
英文摘要……………………………………………………………II
致謝………………………………………………………………III
目錄………………………………………………………………IV
表目錄……………………………………………………………VII
圖目錄……………………………………………………………VIII
第一章 緒論…………………………………………………………1
1-1 前言……………………………………………………………1
1-2 研究目的………………………………………………………1
第二章 混合定律……………………………………………………4
2-1 合成系統中的介電損耗………………………………………4
2-1-1 雙層系統架構………………………………………………7
2-1-2 散佈系統架構………………………………………………9
2-1-3 多孔介質……………………………………………………11
2-2 異質系統下的介電常數………………………………………12
2-2-1 橢球形散佈粒子……………………………………………12
2-2-2 球形散佈粒子………………………………………………14
2-2-3圓柱體或棒狀散佈粒子……………………………………15
2-3 混合定律………………………………………………………16
2-4 計算純陶瓷介電常數的誤差分析……………………………18
第三章 介電質共振量測技術…………………………………23
3-1 品質因素(Q)…………………………………………………23
3-2 介電共振器簡介…………………………………………26
3-3 共振模態…………………………………………………29
3-4 介電共振器模態理論……………………………………31
3-5 介質共振的量測技術…………………………………………34
3-5-1柱狀共振技術………………………………………………34
3-5-2圓柱腔共振技術……………………………………………36
3-5-3波導管反射共振技術………………………………………37
3-6 介電常數的量測………………………………………………38
3-7 Qd值的量測……………………………………………………40
第四章 實驗製程………………………………………………42
4-1 介質樣品設計…………………………………………………42
4-1-1 介質樣品製作程序…………………………………………43
4-1-2 混合粉末……………………………………………………44
4-1-3 壓製成形……………………………………………………45
4-2 介質樣品之量測………………………………………………47
第五章 結果與討論……………………………………………52
第六章 結論及未來研究………………………………………59
參考文獻…………………………………………………………60
英文論文大綱………………………………………………………63
簡歷…………………………………………………………………66
[1]S. Stolzle, A. Enders, and G. Nimtz, "Numerical simulation of random composite dielectrics," J. Phys. I France, vol. 2, pp. 401-408, 1999.
[2]K. Wakino, "New proposal on mixing rule of the dielectric constant of mixture," IEEE International Symposium on Applications of Ferroelectrics, 1994, pp. 33-38.
[3]J. B. Kim, T. W. Kim, and C. G. Kim, "Simulation method of complex permittivities of carbon balck/epoxy composites at microwave frequency band," J. of Applied Polymer Science, vol. 100, pp. 2189-2195, 2006.
[4]M. E. Achour, M. El Malhi, J. L. Miane, F. Carmona, and F. Lahjomri, "Microwave properties of carbon black-epoxy resin composites and their simulation by means of mixture laws," J. of Applied Polymer Science, vol. 73, pp. 969-973, 1999.
[5]K. Lichtenecker and K. Rother " Die herleitung des logarithmischen mischungsgesetzes als allegemeinen prinzipien der staionaren stromung," K. Phys. Zeitschrift, vol. 32, pp. 255-260, 1931.
[6]H. Ragossnig and A. Feltz, "Characterization of dielectric powders by a new defined form factor," J. Eur. Ceram. Soc., vol. 18, pp. 429-444, 1998.
[7]H. Looyenga, "Dielectric constants of mixtures," Physica, vol. 31, pp. 401-406, 1965.
[8]W. R. Tinga, W. A. G. Voss, and D. F. Blossey, "Generalized approach to multiphase dielectric mixture theory," J. Appl. Phys., vol. 44, pp. 3897-3902, 1973.
[9]J. R. Birchak, C. G. Gardner, J. E. Hipp, and J. M. Victor, "High dielectric constant microwave probes for sensing soil moisture,"Proc. IEEE, vol. 62, pp. 93-98, Jan. 1974.
[10]K. Lichtenecker, "Die dielektrizitatskonstante naturlicher und kunstlicher mischkorper," K. Phys. Zeitschrift, vol. 27, pp. 115-158, 1926.
[11]J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London A, vol. 203, pp. 385-420, 1904.
[12]J. Lou, T. A. Hatton, and P. E. Laibinis, "Effective dielectric properties of solvent mixtures at microwave frequencies," Measurement, vol. 37, pp. 123-130, 2005.
[13]K. W. Wagner, "Erklärung der dielektrischen Nachwirkun gs-vorgänge auf Grund Maxwellscher Vorstellungen," Arch. Elektrotech., vol. 2, pp. 371-387, 1914.
[14]O. Wiener, " Der Abhandlungen der Mathematisch-Physischen Klasse der Konigl," Abh. Sachs. Akad. Wiss., Math. Phys., vol. 32, pp. 509-604, 1912.
[15]L. Rayleigh, "On the influence of obstacles arranged in rectangular order upon the properties of a medium," Philos. Mag. , vol. 34, pp. 481-502, 1892.
[16]K. W. Wagner, Arch. Elektrochem., vol. 3, 1914, p. 100.
[17]O. Wiener, LeipzigerBerichte, vol. 62, p. 256, 1910.
[18]D. A. G. Bruggeman, " The calculation of various physical constants of heterogeneous substances, 1, The dielectric constants and conductivities of mixtures composed of isotropic substances," Ann. Phys. (Leipzig), vol. 24, pp. 636-664, 1935.
[19]David M. Pozar, Microwave engineering./David M. Pozar.-3rd ed, 2004
[20]D. Kajfez and P. Guillon, Dielectric Resonators, Artech House, Massachusetts, p.345, 1986.
[21]B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range, IRE Trans. Microwave Theory Tech. MTT-8 (1960) 402–410.
[22]Y. Kobayashi, M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method, IEEE Trans. Microwave Theory Tech. MTT-33 (1985) 586–592.
[23]H. Tamura, H. Hatsumoto, K. Wakino, Low temperature properties of microwave dielectrics, Jpn. J. Appl. Phys. 28 (Suppl. 28-2) (1989) 21–23.
[24]T. Konaka, M. Sato, H. Asano, S. Kubo, Relative permittivity and dielectric loss tangent of substrate materials for high-Tc film, J. Supercond. 4 (1991) 283–288.
[25]M. Sucher, in: M. Sucher, J. Fox (Eds.), Handbook of Microwave Measurements, vol. II, Brooklyn Polytechnic Press, NY, 1963 (Chapter VIII).
[26]Jyh Sheen, "Study of microwave dielectric properties measurements by various resonance techniques," Measurement, vol. 37, pp. 123-130, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊