跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:白詔安
研究生(外文):Jau-An Bai
論文名稱:電泳螢光粉應用於發光二極體之研究
論文名稱(外文):Study of electrophoretic phosphor applied on light-emitting diodes
指導教授:陳文瑞陳文瑞引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:103
中文關鍵詞:電泳
外文關鍵詞:electrophoretic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:577
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由前人文獻得知,若要加快實現固態照明的腳步,傳統白光二極體所採用點黃色螢光膠方式,將造成許多不可預測之問題等種種因素,且容易演生出光色不均勻與封裝體可靠度等問題,因此必須被加以改善才能被應用於固態照明上。
本研究使用電泳技術,將黃色螢光粉分散於懸浮於溶劑中,在一外加電壓驅動下,於陰極基板上形成一均勻之粉體層。在製備完成懸浮液後,本實驗藉由改變外加電壓、螢光粉粉體濃度、沉積時間、去離子水比例與不同基板上沉積,探討電泳螢光粉的重量與厚度與施加的電壓、濃度、沉積時間等關係,並且研究去離子水比例的改變對於電解質之影響與不同基板沉積之粉體層是否產生細微結構之變化。
藉由電泳螢光粉之基礎研究,將可得知在外加電壓為200V時,當螢光粉的濃度改變,我們可控制螢光粉沉積厚度約為16至40μm,被藍光LED激發所得之白光色溫可達3800至6000 (K) 之範圍,白光均勻度由色溫之差異值約為80~3000 (K),而在高色溫的表現上,其因螢光粉厚度與緻密度之關係,差異值將會更大,因此使用電泳法所製作之螢光粉確實可提高白光之均勻度,而且還可提高外部取光效率5 %。另外我們得知其色溫差異量之變化主要由藍光LED之出光量與螢光粉層之緻密度所影響,故未來可著墨於緻密度之改善。
Literatures about reliability and dispense of LED know, in order to accelerate the development of solid-state lighting, we must overcome the problem made by tradition dispense phosphor gel converted blue light emitting diodes.
In this study, the phosphor particle are uniform dispersed in solvent and then electrophoresis deposition forms uniform deposition on cathode electrode under an apply voltage. After the suspension done, the experiment through changing the parameter condition, such as apply voltage, phosphor concentration, deposition time, DI water percentage and different substrate. We discuss the relationship among the weight and thickness of electrophoretic phosphor and the apply voltage, concentration, deposition time. Besides, we also discuss how the percentage change of DI water could influence electrolyte and whether deposition in different substrate would form the structures’ variation.
In the electrophoretic phosphor basic study, the apply voltage at 200V under the concentration of phosphor varies and then we can controls deposition thickness approximately 16 to 40 micrometer. The white light of phosphor by blue LED emitting correlated color temperature (CCT) to achieve approximately 3800 to 6000 K rages. The white light uniform values define CCT variation. Therefore, the CCT variation value to achieve approximately 80 to 1500 K. The high CCT observed variation value bigger of phosphor thickness and packing density relation. For this reason, the EPD phosphor methods to achieve uniform white light and increase external extraction efficiency than tradition white LED. In addition, we knows CCT variation value to come from blue LED chip light emitter amount and phosphor packing density influence. In the future, the EPD phosphor study can focus improvement phosphor packing density.
目錄
中文摘要 ............................................................................................................i
英文摘要 .............................................................................................................ii
誌謝 ..................................................................................................................vi
目錄…......................................................................................…………………iii
表目錄 ................................................................................................................vi
圖目錄 ...............................................................................................................vii
第一章 序論 .......................................................................................................1
1.1 前言 ..........................................................................................................1
1.2 白光發光二極體 (LED) 種類 ................................................................2
1.3 研究動機 ..................................................................................................3
第二章 理論基礎與文獻探討 .........................................................................6
2.1 電泳沉積之原理 ......................................................................................6
2.2 Electrophoretic deposition (EPD) 懸浮液的穩定性 …............................8
2.3 膠體粒子之分散 ....................................................................................12
2.4 黏結劑的添加 ........................................................................................13
2.5 影響電泳速度的因素 ............................................................................14
2.6 電泳沉積法之優點及應用 …......……………………………………15
2.7 螢光材料簡介 ...….................................................................................15
2.8 螢光材料的分類 …................................................................................16
2.9 發光機制簡介 ….......................................................................……….18
2.10 螢光材料的發光原理 …...................................................…………...21
2.11 發光中心型螢光材料 …......................................................................23
2.12 YAG型螢光材料的簡介 …...................................................................26
第三章 實驗方法與量測設備原理介紹 .......................................................29
3.1 實驗流程 ................................................................................................29
3.2 電泳法 ....................................................................................................29
3.2.2 電泳法相關參數 ..........................................................................30
3.2.3 電解質之反應機制 ......................................................................31
3.2.4 基板清洗 ......................................................................................31
3.2.5 實驗參數 ......................................................................................32
3.2.6 電泳法沉積螢光粉粉末 ..............................................................32
3.3 量測設備介 ............................................................................................33
3.3.1 掃描式電子顯微鏡量測 ..............................................................33
3.3.2 能量散射光譜儀 ..........................................................................33
3.3.3 積分球 ..........................................................................................34
3.4 光度學基本單位簡介 ............................................................................38
第四章 結果與討論 .........................................................................................40
4.1 螢光粉粒子電泳沉積行為 ....................................................................40
4.2 螢光粉粉體層形態分析 ........................................................................47
4.3 電泳螢光粉光學特性分析 ....................................................................49
4.4電泳螢光粉黃暈分析 ..............................................................................51
第五章 結論 ...................................................................................................53
參考文獻 .........................................................................................................55
附錄 ...................................................................................................................55
英文論文大綱 …................................................................................……….100
參考文獻
[1] P. Sarkar, and P. S. Nicholson, “Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics,” J. Am. Ceram. Soc. Vol.79, pp. 1987-2002, (1996).
[2] K. Kamada, K. Maehara, M. Mukai, S. Ida, and Y. Matsumoto, “Fabrication of metal oxide-diamond composite films by electrophoretic deposition and anodic dissolution,” J. Mater. Res. Vol.18, pp. 2826-2831, (2003).
[3] A. T. Kuhn (ed.), Industrial Electrochemical Processes; p. 128. Elsevier, Amsterdam, The Netherlands, 1971.
[4] A. Formeto, L. Montanaro, and M. V. Swain, “Micromechanical characterization of electrophoretic-deposited green films,” J. Am. Ceram. Soc., Vol.82, pp. 3251-3528, (1999).
[5] T. Uchikoshi, K. Ozawa, B. D. Hatton, and Y. Sakka, “Dense, bubble-free, ceramic deposits from aqueous suspensions by electrophoretic deposition,” J. Mater. Res. Vol.16, pp. 321-324, (2001).
[6] C.Y.Chen, S.Y.Chen and D.M.Liu, "Electrophoretic Deposition Forming of Porous Alumina Membranes," Acta. Mater., Vol.47, pp. 2717-26, (1999).
[7] J. A. Lewis, “Colloidal processing of ceramics,” J. Am. Ceram. Soc. Vol.83, pp. 2341-59, (2000).
[8] I. Zhitomirsky, “Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects,” Advances in colloid and interface science, Vol.97, pp.279-317, (2002).
[9] J. A. Siracuse, J. B. Talbot, E. Sluzky, and K. R. Hesse, “The adhesive agent in cataphoretically coated phosphor screens,” J. Electrochem. Soc. Vol.137, pp.346-348, (1990).
[10] B. E. Russ, and J. B. Talbot, “An analysis of the binder formation in electrophoretic deposition,” J. Electrochem. Soc. Vol.145, pp.1253-1256, (1998).
[11] K. L. choy, J. P. Feist, A. L. Heyes and B. Su, “Eu-doped Y2O3 phosphor films produced by electrostatic-assisted chemical vapor deposition” J. Mater. Res., Vol.14, pp.3111-3114, (1999).
[12] G. Blasse, B.C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg, Germany (1994).
[13] Shigeo Shionoya, William M. Yen, “Phosphor handbook”, CRC Press LLC, New York, USA (1998).
[14] 楊俊英著,“電子產業用螢光材料之應用調查”工研院,民國81年。
[15] 陳昱霖,”柘榴石(Y3Al5O12)螢光體之合成與性質研究”,國立成功大學材料科學及工程學系碩士論文,民國90年。
[16] 徐修生,”硫化鋅摻錳螢光粉之製備與性質研究”, 國立成功大學材料科學及工程學系碩士論文,民國91年。
[17] K S. Luslick, “Sonochemistry”, Science Vol.23, pp.1439~1445, (1990).
[18] R. C. Ropp, “Luminescence and the solid state”, Elsevier Science Publishers, B. V., The Netherlands (1991).
[19] J.A. DeLuca, “An introduction to luminescence in inorganic solids”, J. Chem. Educ. Vol.57, p.541, (1980).
[20] 劉如熹、王健源,”白光發光二極體製作技術”,全華圖書 2001。
[21] S. Geller and M.A. Gilleo, “Structure and ferrimagnetism of yttrium and rare earth iron garnets”, Acta crystallogr. Vol.10, p.239, (1957).
[22] J.E. Geusic and L.G. Van Uitert, “Laser oscillations In Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets”, Appl. Phys. Lett. Vol4, p.182, (1964).
[23]S. Geller, “Crystal chemistry of the garnets”, Z. Kristallogr 125, (1967).
[23]余昭蓉,“摻加稀土元素鋁酸釔螢光體之合成與特性鑑定”,交通大學應用化學研究所碩士論文,1997年。
[25] R. C. Ropp, “The Chemistry of Artificial Lighting Devices”, Elsevier, New York, (1993).
[26] 黃榮茂,”化學化工百科亂典”,曉園出版社,台北(1987)。
[27] 莊萬發編撰“超微粒子理論應用”復漢出版社,民國 84 年。
[28] R. S. Berns, “Billmeyer and Saltzman’s Principles of Color Technology, Third Edition,” John Wiley & Sons, 2000.
[29] 許招墉編譯, “照明設計,” 全華科技圖書, Nov. 1999.
[30] J. Zhang and B. I. Lee, “Electrophoretic deposition and characterization of micrometer-scale BaTiO3 based X7R dielectric thick films,” J. Am. Ceram. Soc. Vol.83, pp.2417-2422, (2002).
[31] Z. Zhang, Y. Huang, and Z. Jiang, “Electrophoretic deposition forming of SiC-TZP composites in a nonaqueous sol media,” J. Am. Ceram. Soc., Vol.77, pp.1946-1949, (1994).
[32] I. Zhitomirsky, “Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects,” Advances in colloid and interface science, Vol.97, pp.279-317, (2002).
[33] I. Zhitomisky, R. Chaim, L. Gal-Or, and H. Bestgen, “Electrochemical Al2O3-Cr2O3 alloy coatings on non-oxide ceramic substrates,” Journal of Materials Science, Vol.32, pp.5205-5213, (1997).
[34] YC Wang, IC Leu, MH Hon, “Kinetics of electrophoretic deposition for nanocrystalline zinc oxide coatings,” J. Am. Ceram. Soc. Vol.87, pp.84-88, (2004).
[35] Z. Zhang, Y. Huang, and Z. Jiang, “Electrophoretic deposition forming of SiC-TZP composites in a nonaqueous sol media,” J. Am. Ceram. Soc., Vol.77, pp.1946-1949, (1994).
[36] Y. Hirata, A. Nishimoto, and Y. Ishihara, “Forming of alumina powder by electrophoretic deposition”, Nippon Seramikkus Kyokai Gakujutusu Ronbunshi, Vol.99, pp.108-113, (1991).
[37] A. Sussman, and T. J. Ward, “Electrophoretic deposition of coatings from glass-isopropanol slurries”, RCA Rev., Vol.42, pp.178-197, (1985).
[38] J. H. Yum, K. H Choi, and Y. E. Sung, “Adhesion Improvement of Phosphor Layer by Combining Electrophoretic Deposition and UV Curing”, J . Electrochem. Soc., Vol.150, pp.H43-H46, (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top