跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林義峯
研究生(外文):Yi-Feng Lin
論文名稱:氮化鋁鎵/氮化鎵高電子遷移率電晶體之製作與研究
論文名稱(外文):Fabrication and Study of AlGaN/GaN High Electron Mobility Transistor
指導教授:陳文瑞陳文瑞引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
中文關鍵詞:氮化鎵高電子遷移率電晶體
外文關鍵詞:GaNHigh Electron Mobility Transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:483
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來由於半導體製程技術蓬勃發展,在高頻、高功率微波元件領域中,擁有高效率的元件成為很重要的一個課題,因此相關元件的研究也漸漸受到重視。高電子遷移率電晶體(High Electron Mobility Transistor , HEMT)可利用結構中的二維電子氣(2DEG)來得到較高的的電子遷移率,在此我們將它拿來作為研究的目標。
本論文首先介紹氮化鎵(GaN)材料特性優勢與相關應用,之後介紹高電子遷移率電晶體的工作原理,以此為背景設計成長我們的元件氮化鋁鎵/氮化鎵高電子遷移率電晶體(AlGaN/GaN HEMT)。在元件的磊晶部份是採用金屬有機化學氣相沈積系統(Metal Organic Chemical Vapor Deposition, MOCVD)成長出高品質的二維電子氣(Two Dimensional Electron Gas, 2DEG),成長出的試片在室溫時的片載子密度(Sheet Carrier Density)及電子遷移率(Mobility)分別為1.36×10^13 cm^-2和1200 cm^2/V-sec,在元件的歐姆接觸方面,我們參考歐姆接觸的原理,利用環狀傳輸線模型以鈦/鋁/鎳/金 (30/150/45/55 nm)作為金屬接觸電極,之後利用快速升溫退火(RTA),在氮氣環境下進行825℃快速熱退火30秒鐘的條件,製作出最佳的特徵電阻值可達到5×10^-4 Ω-cm^2。在元件鈍化層製程的分析上,成長了二氧化矽(SiO2)鈍化層後,減少元件之漏電路徑,也可改善閘極金屬斷裂情況。最後元件製作完成之後,我們將針對不同的閘極長度(Gate Length)之氮化鋁鎵/氮化鎵高電子遷移率電晶體作直流電性量測,比較不同的閘極長度後元件,以閘極長度為0.5 μm之元件有較佳之特性,元件最大飽和電流為349 mA/mm、最大轉導(gm)為94 mS/mm。
In recent years, the semiconductor fabrication was developed greatly. That is an important topic to get a high efficency device in the field of high frequency and high power device. Therefore, the researchs about devices were attended greatly by the research groups in the world. The high electron mobility transistor can get high electron mobility in the 2DEG, which located in the interface on AlGaN and GaN.
In this thesis, first, we will introduce the properties, applications of GaN and the fundamental of HEMT. The HEMT structure was grew by metal-organic chemical vapor deposition system. The sheet carrier demsity and electron mobility of the sample were 1.36×10^13 cm^-2 and 1200 cm^2/V-sec in room temperature. We referred the fundamental of ohmic contact to use the circular transmission line model. We can get the lower specific contact resistance 5×10^-4 Ω-cm^2 from Ti/Al/Ni/Au(30/150/45/55nm), which was annealed in nitrogen ambience 825℃ 30sec. The SiO2 sidewall passivation can avoid the mesa etching induced the sidewall leakage and prevent the drop height of mesa lead the gate metal not continue. When the fabrication of the devices was finished, we will measure the direct current properties of variouse gate length sizes devices. We can get the maximum saturation current 349 mA/mm and maximum transconductance 94 mS/mm.
中文摘要....................i
ABSTRACT....................iii
誌謝....................iv
目錄....................v
表目錄....................vii
圖目錄....................viii
第一章 序論....................1
1.1 前言....................1
1.2 研究動機....................2
1.3 論文架構....................3
第二章 氮化鋁鎵/氮化鎵高電子遷移率電晶體特性與基礎原理....................6
2.1 氮化鋁鎵/氮化鎵HEMT材料特性介紹....................6
2.2 氮化鋁鎵/氮化鎵HEMT元件結構原理分析....................7
2.3 氮化鋁鎵/氮化鎵HEMT元件製程相關介紹....................11
第三章 氮化鋁鎵/氮化鎵高電子遷移率電晶體製作與量測設備....................28
3.1 氮化鋁鎵/氮化鎵HEMT磊晶成長....................28
3.2 氮化鋁鎵/氮化鎵HEMT元件製程....................29
3.3 氮化鋁鎵/氮化鎵HEMT元件相關量測技術介紹....................43
第四章 氮化鋁鎵/氮化鎵高電子遷移率電晶體量測結果與討論....................58
4.1 氮化鋁鎵/氮化鎵HEMT材料分析....................58
4.1.1元件材料品質分析....................58
4.1.2元件表面形態....................61
4.1.3元件結構分析....................61
4.2 氮化鋁鎵/氮化鎵HEMT元件製程與電性分析....................62
4.2.1氮化鋁鎵/氮化鎵HEMT元件製程分析....................62
4.2.2氮化鋁鎵/氮化鎵HEMT元件直流特性....................64
4.3 氮化鋁鎵/氮化鎵HEMT元件T型閘極製程分析....................66
第五章 結論與未來展望....................80
5.1 研究結論....................80
5.2 未來展望....................82
參考文獻....................84
附錄....................88
EXTENED ABSTRACT....................88
[1] T. Mukai, H. Narimatsu, S. Nakamura, “Amber InGaN Based Light Emitting Diodes Operable at High Ambient Temperature”, J. Appl. Phys., Vol. 37, pp. 479-481, 1998.
[2] S. Nakamura, T. Mukai, M. Senoh, “High Power GaN P-N Junction Blue Light Emitting Diodes”, J. Appl. Phys., Vol. 30, p. 1998, 1991.
[3] T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, M. Ikeda, “100-mW Kink-Free Blue-Violet Laser Diodes with Low Aspect Ratio”, IEEE Journal of Quantum Electronics, Vol. 39, pp. 135-140, 2003.
[4] E. Ozbay, N. Biyikli, I. Kimukin, T. Tut, T. Kartaloglu, O. Aytur, “High-Performance Solar-Blind AlGaN Photodetectors”, The 17th Annual Meeting of the IEEE, Vol. 1, pp. 290-291, 2004.
[5] J. L. Pau, C. Rivera, J. Pereiro, A. Navarro, E. Mu?oz, “Ultraviolet and Visible Nitride Photodetectors : Applications”, IEEE Electron Devices 2005 Spanish Conference, pp.7-10, 2005.
[6] N. Biyikli, I. Kimukin, T. Tut, O. Aytur, E. Ozbay, “Fabrication and Characterisation of Solar-Blind Al0.6Ga0.4N MSM Photodetectors”, Electronics Letters, Vol. 41, No.5, 2005.
[7] L. Shen, S. Heikman, B. Moran, R. Coffie, N. Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, U. K. Mishra, “AlGaN/AlN/GaN High-Power Microwave HEMT”, IEEE Electron Device Letters, Vol. 22, pp. 457-459, 2001.
[8] E. M. Chumbes, J. A. Smart, T. Prunty, J. R. Shealy, “Microwave Performance of AlGaN/GaN Metal Insulator Semiconductor Field Effect Transistors on Sapphire Substrates”, IEEE Trans. Electron Device, Vol. 48, pp. 416-419, 2001.
[9] T. P. Chow, “SiC and GaN High-Voltage Power Switching Devices”, Materials Science Forum, Vol. 338-342, pp. 1155-1160, 2000.
[10] Y. F. Wu, B. P. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, U. K. Mishra, “Very High Breakdown Voltage and Large Transconductance Realized on GaN Heterojunction Field Effect Transistors”, Appl. Phys. Lett., Vol. 69, pp. 1438-1440, 1996.
[11] G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton, H. Cho, J. I. Chyi, C.M. Lee, C. C. Chuo, S. N. G. Chu, R. G. Wilson, “High Voltage GaN Schottky Rectifiers”, IEEE Trans. Electron Device, Vol. 47, pp. 692-696, 2000.
[12] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, D. T. Oslon, “Metal Semiconductor Field Effect Transistor Based on Single Crystal GaN”, Appl. Phys. Lett., Vol. 62, p. 1786, 1993.
[13] L. F. Eastman, V. Tilak, J. Smart, B. M. Green, J. R. Shealy, “Undoped AlGaN/GaN HEMTs for Microwave Power Amplifiers”, IEEE Trans. Electron Devices, Vol. 48, No.3, p. 479, 2001.
[14] V. Kumar, W. Lu, F.A. Khan, R. Schwindt, A. Kuliev, G. Simin, J. Yang, M. Asif Khan, I. Adesida, “High Performance 0.25 μm Gate-Length AlGaN/GaN HEMTs on Sapphire with Transconductance of Over 400 mS/mm”, Electronics Lett., Vol. 38, p. 252, 2002.
[15] M. A. Khan, A. Bhattarai, J. N. Kuznia, D. T. Olson, “High Electron Mobility Transistor Based on a GaN-AlxGa1-xN Heterojunction”, Appl. Phys. Lett., Vol. 63, p. 1214, 1993.
[16] S. J. Cai, R. Li, Y. L. Chen, L. Wong, W. G. Wu, S. G. Thomas , K. L. Wang, “High Performance AlGaN/GaN HEMT with Improved Ohmic Contact”, Electronics Lett., Vol. 34, p. 2354, 1998.
[17] O. Ambacher, J. Smart, J. R. Shealy, M. Murphy , “Two-Dimentional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures”, J. Appl. Phys., Vol. 85, No.6, p. 3222, 1999.
[18] R.Dimitrov et al., “Two-Dimentional Electron Gases in Ga-Face and N-Face AlGaN/GaN Heterostructures Grown by Plasma-Induced Molecular Beam Exitaxy and Metalorganic Chemical Vapor Deposition on Sapphire”, J. Appl. Phys., Vol. 87, No.7, p. 3375, 2000.
[19] I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, U. K. Mishra, “Polarization-Induced Charge and Electron Mobility in AlGaN/GaN Heterostructures Grown by Plasma-Assisted Molecular-Beam Expitaxy”, J. Appl. Phys., Vol. 86, No.8, p. 4520, 1999.
[20] O. Ambacher, “Growth and Applications of Group Ⅲ-Nitrides”, Journal of Phys., Vol. 31, p. 2653, 1998.
[21] S. M. Sze, Physics of Semiconductor Device 2nd Edition, John Wiley & Sons central book company, 1985.
[22] T. Lei, D. Moustakas, J. Graham, Y. He, and J. Berkowitz, “Epitaxial Growth and Characterization of Zinc-Blende Gallium Nitride on (001) Silicon”, J. Appl. Phys., Vol. 71, p. 4993, 1992.
[23] T. Sasaki and T. Matsuoka, “Substrate-Polarity Dependence of Metal-Organic Vapor Phase Epitaxy Grown GaN on SiC”, J. Appl. Phys., Vol. 64, p. 4531, 1988.
[24] T. Detchprohm, K.Hiramatsu, N. Sawaki, and I. Akasaki, “The Homoepitaxy of GaN by Metalorganic Vapor Phase Epitaxy using GaN Substrates”, J. Cryst. Growth., Vol. 137, p. 170, 1994.
[25] R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, “Electron Mobilities in Modulation-Doped Semiconductor Heterojunction Superlatices”, J. Appl. Phys. Lett., Vol. 33, pp.665-667, 1978.
[26] Frank Schwierz, and Juin J. Liou, Modern Microwave Transistors, Wiley-Interscience, New Jersey, 2003.
[27] W. Lu, J. Yang, M. A. Khan, and I. Adesida, “AlGaN/GaN HEMT on SiC with over 100 GHz and Low Microwave Noise”, IEEE Trans. Electron Dev., Vol. 48, pp. 581-585, 2001.
[28] Y.-F. Wu, D. Kapolnek, J. P. Ibbertson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-High Power Density AlGaN/GaN HEMTs”, IEEE Trab. Electron Dev., Vol. 48, pp. 586-590, 2001.
[29] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s”, IEEE Electron Device Letters, Vol. 19, p. 3, 1998.
[30] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann and K. Chu, “Two Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization in Undoped and Doped AlGaN/GaN Heterostructures”, J. Appl. Phys., Vol. 85, pp. 334-344, 2000.
[31] 林柏辰, “氮化鋁鎵/氮化鎵高電子移導率場效電晶體之製作與應用”, 碩士論文, 國立中央大學, 2005.
[32] 鄭紹章, “氮化鋁鎵/氮化鎵高電子移導率製作於矽基板與藍寶石基板之特性比較與應用電路”, 碩士論文, 國立中央大學, 2008.
[33] T. C. Shen, G. B. Gao, and H. Morkoc, “Recent Developments in Ohmic Contacts to III-V Compound Semiconductors”, J. Vac. Sci. Tech., B10, p. 2113, 1992.
[34] D. K. Schroder, Semiconductor Material and Device Characterization, Wiley Interscience, 1998.
[35] Zhifang Fan, S. Noor Mohammad, Wook Kim, ?zg?r Aktas, Andrei E. Botchkarev, and Hadis Morkoc, “Very Low Resistance Multiplayer Ohmic Contact to n-GaN”, Appl. Phys. Lett., Vol. 68, No. 12, pp. 1672-1674, 1996.
[36] Rudiger Quay, Gallium Nitride Electronics, Springer, 2008.
[37] 李嗣涔, 管傑雄, 孫台平, 半導體元件物理, 三民書局, 1995
[38] Donald A. Neamen, Semiconductor Physics & Devices, McGraw-Hill, London, 1997.
[39] 張家華, “異質結構AlGaN/GaN金屬接面特性之研究”, 碩士論文, 國防大學中正理工學院, 2004.
[40] 李孟麟, “磷化銦/砷化銦鎵雙異質接面雙極性電晶體製作與特性分析”, 碩士論文, 國立中央大學, 2003.
[41] 曾明源, “磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究”, 碩士論文, 國立中央大學, 2001.
[42] 簡仁傑, “二維至三維微波被動元件與射頻電路之設計與研製”, 碩士論文, 國立中央大學, 2002.
[43] 林家慶, “有機金屬氣相磊晶法成長三族氮化物半導體及相關光電元件之研究”, 博士論文, 國立成功大學, 2008.
[44] M.E. Lin, Z.Ma, F.Y. Huang, Z. F. Fan, L. H. Allen, “Low Resistance Ohmic Contacts on Wide Band-Gap GaN”, Appl. Phys. Lett., Vol. 64, p. 21, 1994.
[45] Y. Han, S. Xue,T. Wu, Z.Wu, W. Guo, Y. Luo, “Nonselective and Smooth Etching of GaN/AlGaN Heterostructures by Cl2/Ar/BCl3 Inductively Coupled Plasmas”, Journal of Vacuum Science & Technology, Vol. 22, pp. 407-412, 2004.
[46] N. Miura, T. Nanjo, M. Suita, T. Oishi, Y. Abe, T. Ozeki, H. Ishikawa, T. Jimbo, “Thermal Annealing Effects on Ni/Au Based Schottky Contacts on n-GaN and AlGaN/GaN with Insertion of High Work Function Metal”, Solid-State Electronics, Vol. 48, pp. 689–695, 2004.
[47] F. Sacconi, A.D. Carlo, P. Lugli, and Hadis Morko?, “Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs”, IEEE Transactions on Electron Devices, Vol. 48, p. 3, 2001.
[48] L. Shen, R. Coffie, D. Buttari, S. Heikman, A. Chakraborty, A. Chini, S. Keller, S. P. DenBaars, U. K. Mishra, “High-Power Polarization-Engineered GaN/AlGaN/GaN HEMTs without Surface Passivation”, IEEE Electronics Lett., Vol. 25, pp. 7-9, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊