跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林伯彥
研究生(外文):Bo-Yan Lin
論文名稱:二氧化鈦奈米管之物理與光檢測器應用之研究
論文名稱(外文):Characteristics of photodetectors with TiO2 nanotubes
指導教授:方得華方得華引用關係
指導教授(外文):Te-Hua Fang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
中文關鍵詞:二氧化鈦奈米管光檢測器光電流
外文關鍵詞:TiO2nanotubephotodetectorphotocurrent
相關次數:
  • 被引用被引用:1
  • 點閱點閱:554
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在二氧化鈦奈米管物理性質及應用於光檢測器之探究。我們利用電化學的方法在純鈦箔成長TiO2奈米管,並探討在電解液、電壓、處理時間以及熱退火溫度對二氧化鈦奈米管結構的影響。再利用場發射掃描式電子顯微鏡(FE-SEM)、光致激發光譜儀(PL)、能量分散光譜分析儀(EDS)、X光繞射分析儀(XRD)等等的儀器去分析所成長之二氧化鈦奈米管的表面形態以及特性。實驗結果顯示出使用甘油混合氟化氨並加入少許的去離子水所成長的二氧化鈦奈米管結構較良好。增加電壓(20V~35V)會增加奈米管成長的孔徑(約70 ~ 160 nm)與長度(約380 ~ 1200 nm)。越長的成長時間(40 min ~ 120 min)也會增加奈米管的長度(約500 ~ 1500 nm)。經PL量測可以得到,本實驗中所成長的二氧化鈦奈米管結構在波長400 nm 與450 nm附近有較高的峰值。在光檢測器應用上,我們發現入射光波長在330 nm、320nm以及310nm光電流會明顯增強,光響應度約1~2個級數。
In this study, the TiO2 nanotubes are fabricated by the electrochemical method from pure titanium foil. We investigate the effects of electrolytes, voltages , process time and annealing temperature on the morphology of the TiO2 nanotubes . We investigate the morphology and property of the TiO2 nanotubes from the result of Field emission scanning electron microscope (FE-SEM), Photoluminescence spectrometer (PL), Energy dispersive spectrometer (EDS), X-ray diffraction (XRD) measurements. The result exhibit the TiO2 nanotubes have better structure when grown at the electrolyte of NH4F to mix glycerol and little deionized water. Increasing the voltages will increase the diameter (form 70 to 160nm) and the length (from 380 to 1200 nm) of the nanotubes. When the process time increases the length (from 500 to 1500 nm) of the nanotubes will increase. The result of PL measurement exhibit the TiO2 nanotubes have comparatively value at the wavelength near 400 nm and 450 nm. The photocurrent of the photodetector will apparently increase, when it is irradiation with incidence wavelengths of 330 nm , 320 nm and 310 nm.
The photoresponsivity was about 1~2 orders.
摘要………………………………………………………………..i
Abstract.……………………………………………………………...ii
誌謝…………………………………………………………………...iii
目錄…………………………………………………………………...iv
表目錄………………………………………………………………..vii
圖目錄………………………………………………………………viii
第一章 緒論……………………………………………………………..1
1-1 前言…………………………………..………………….…..….1
1-2 研究動機………….………..………..…….…………...…….....2
第二章 基礎理論..............................………..…………….…………..5
2-1 金屬-半導體接面電流傳導概述.....………….……................5
2-1-1 接面電流傳導機制……………..……………….…...….5
2-1-2 蕭特基理論.................…………………………....……..8
2-2 光檢測器...........…………….…………………………………8
2-3 二氧化鈦簡介……………………………………………...…10
2-3-1 二氧化鈦特性....................................................…...10
2-3-2 二氧化鈦備製方法........………………………………13
2-4 電化學法原理.....................................................................15
2-4-1 鋁陽極處理.................................................................15
2-4-2 氧化鋁薄膜成長機制.....................................................16
2-4-3 鈦的電化學反應.............................................................18
第三章 實驗過程及分析方法……………………………………….22
3-1 實驗器具………………………………………………….…....22
3-2 實驗步驟……………………………………………………….23
3-2-1 實驗流程....……………………………………………23
3-2-2 二氧化鈦奈米管製作..……………………….………..24
3-2-2-1 基板清洗............................................................24
3-2-2-2 奈米管備製........................................................25
3-2-3 金屬-半導體-金屬(MSM)光檢測元件製作…….……..26
3-2-3-1 檢測器製程........................................................26
3-2-3-2 元件形貌............................................................28
3-3 檢測儀器…........…………...........……………………………..29
3-3-1 場發射掃描式電子顯微鏡…………..……………….29
3-3-2 原子力顯微鏡.................................................................31
3-3-3 X光繞射分析儀...............................................................32
3-3-4 螢光光譜儀.....................................................................32
3-3-5 穿透式電子顯微鏡.......................................................33
3-4 光檢測器量測技術.............................................................33
第四章 結果與討…..…………………………………………………..36
4-1 FE-SEM分析.......................…………………………………..36
4-1-1 氟化氨溶於純甘油成長二氧化鈦奈米管FE-SEM分
析............................................…....................................36
4-1-2 氟化氨溶於加水甘油成長二氧化鈦奈米管FE-SEM
分析...................................….........................................45
4-2 表面AFM分析................................………………………..…..56
4-3 XRD特性分析........................................................…………….58
4-4 EDS分析.........................................................………………….60
4-5 PL分析...................................................………………………..64
4-6 TEM分析.....................................................................................70
第五章 金屬-半導體-金屬光檢測器……...…………………………71
5-1 光檢測器暗電流-電壓與光電流-電壓特性量測......................71
5-2 光檢測器光響應度量測………....…………………………..75
第六章 結論與未來工作……………………………………………..79
6-1 結論…………………………….………………………………79
6-2 未來工作…………….…………………………………………80



表目錄
表 2-1 二氧化鈦三種晶相之物理特性...............................................10
表 2-2 銳鈦礦與金紅石物理特性比較..............................................11
表 2-3 二氧化鈦製備法優缺點比較...................................................14




















圖目錄
圖 1-1 模板法成長奈米結構示意圖…….................………………4
圖 2-1 順偏壓下蕭特基金屬接面的四種基本傳導機制………......5
圖 2-2 熱激發傳導機制示意圖……………………..........................6
圖 2-3 熱場激發傳導機制示意圖………..…………..........................7
圖 2-4 場發射傳導機制示意圖……………………..........................7
圖 2-5 金屬-半導體-金屬光檢測器工作原理示意圖…..………..…..9
圖 2-6 二氧化鈦主要晶相結構..…………………………................12
圖 2-7 陽極氧化鋁孔洞成長機制示意圖……………......................17
圖 2-8 電化學法成長奈米管結構機制示意圖……………..………21
圖 3-1 實驗流程圖………………………...........................................23
圖 3-2 載具組裝示意圖………………………...................................25
圖 3-3 陽極處理實驗示意圖………………………...........................26
圖 3-4 光檢測器元件製作流程圖........…………………...................27
圖 3-5 光罩圖……….………..……....................................................28
圖 3-6 SEM內部構造示意圖………..……….……...........................30
圖 3-7 AFM內部結構示意圖……...…………...................................31
圖 3-8 PL內部結構示意圖..................................................................33
圖 4-1 電解液未加水成長電壓20V正視圖..…...…………………...37
圖4-2 電解液未加水成長電壓25V正視圖……….………………...38
圖4-3 電解液未加水成長電壓30V正視圖………….……………...39
圖4-4 電解液未加水成長電壓35V正視圖……….………………...40
圖4-5 電解液未加水成長電壓20V斷面圖………….……………...41圖4-6 電解液未加水成長電壓25V斷面圖………………………...42
圖4-7 電解液未加水成長電壓30V斷面圖……….………………...43
圖4-8 電解液未加水成長電壓35V斷面圖……….………………...44
圖4-9 電解液加水成長電壓20V正視圖…………….………….......46
圖4-10 電解液加水成長電壓25V正視圖……….……………….....47
圖4-11 電解液加水成長電壓30V正視圖……….……………….....48
圖4-12 電解液加水成長電壓35V正視圖……….……………….....49
圖4-13 電解液加水成長電壓20V斷面圖…………….………….....50
圖4-14 電解液加水成長電壓25V斷面圖…………………….….....51
圖4-15 電解液加水成長電壓30V斷面圖……………......................52
圖4-16 電解液加水成長電壓35V斷面圖…………….….................53
圖4-17 (a)成長時間與奈米管長度關係圖(b)成長電壓與奈米管長度
關係圖……………………....................................................54
圖4-18 (a)成長時間與奈米管管徑關係圖(b)成長電壓與奈米管管徑
關係圖……………………....................................................55
圖4-19 未加水電解液中成長電壓為30V時不同時間所成長之二氧
化鈦奈米管表面AFM分析圖………………………...........56
圖4-20 加水電解液中成長電壓為30V時不同時間所成長之二氧化
鈦奈米管表面AFM分析圖………………………...............57
圖4-21 二氧化鈦奈米管退火處理之XRD分析圖......................…..59
圖4-22 未加水電解液成長之二氧化鈦奈米管EDX分析圖….…....60
圖4-23 加水電解液成長之二氧化鈦奈米管EDX分析圖…….…....61
圖4-24 未加水電解液成長之二氧化鈦奈米管不同退火溫度EDX分
析圖........................................................................................62
圖4-25 加水電解液成長之二氧化鈦奈米管不同退火溫度EDX分析
圖………………………………… ………………………63
圖4-26 未加水電解液固定20V成長之二氧化鈦奈米管PL圖...…..64
圖4-27 未加水電解液固定25V成長之二氧化鈦奈米管PL圖….....65
圖4-28 未加水電解液固定30V成長之二氧化鈦奈米管PL圖….....65
圖4-29 未加水電解液固定35V成長之二氧化鈦奈米管PL圖…….66
圖4-30 加水電解液固定20V成長之二氧化鈦奈米管PL圖….……66
圖4-31 加水電解液固定25V成長之二氧化鈦奈米管PL圖…….…67
圖4-32 加水電解液固定30V成長之二氧化鈦奈米管PL圖….……67
圖4-33 加水電解液固定35V成長之二氧化鈦奈米管PL圖……….68
圖4-34 未加水電解液成長之二氧化鈦奈米管退火後之PL圖…....69
圖4-35 加水電解液成長之二氧化鈦奈米管退火後之PL圖………69
圖4-36 二氧化鈦奈米管之TEM分析圖……………………………70圖5-1 元件實際圖…………………………………………………….71
圖5-2 不同參數之光檢測器暗電流………………………………..72
圖5-3 成長參數40min 30V之光檢測器光電流……….……………..73
圖5-4 成長參數60min 30V之光檢測器光電流…………….………..73
圖5-5 成長參數90min 30V之光檢測器光電流…………….………..74
圖5-6 成長參數120min 30V之光檢測器光電流………….…………74
圖5-7 成長參數40min 30V之光檢測器光響應度……….…………..75
圖5-8 成長參數60min 30V之光檢測器光響應度……….…………..76
圖5-9 成長參數90min 30V之光檢測器光響應度……………….…..76
圖5-10 成長參數120min 30V之光檢測器光響應度…………...……77
圖5-11 固定輸入電壓不同成長參數之光檢測器光響應度………...77
圖5-12 不同成長時間製作之元件光暗電流比較…….……………..78
圖5-13 不同成長時間製作之元件光暗電流比.……………………..78
[1].M. Sasaki, S. Takeshita, M. Sugiura, N. Sudo, Y. Miyake, Y. Furusawa, and T. Sakata, "Ground-based observation of biologically active solar ultraviolet-B irradiance at 35°N latitude in Japan," J. Geomagn. Geoelectr. 45, 473 (1993)
[2].Q. Chen, M. A. Khan, C. J. Sun, and J. W.Yang, “Visible-blind ultraviolet photodetectors based on GaN p-n junctions”, Electron. Lett. 31, 1781 (1995)
[3].E. Monroy, E. Munoz, F.J. Sanchez, F. Calle, E. Calleja,B.Beaumont, P. Gibart, J. A. Munoz, F. Cusso, “High- performance GaN p-n junction photodetectors for solar ultraviolet applications” ,Semicond. Sei. Technol. 13, 1042 (1998)
[4].J.M. Van Hove, R. Hickman, J.J. Klaassen, P.P. Chow, P.P. Ruden,” Ultraviolet-sensitive, visible-blind GaN photodiodes fabricated by molecular beam epitaxy” Appl. Phys. Lett. 70, 2282 (1997)
[5].D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, D. Jiaz, M. Razeghi,” Visible blind GaN p-i-n photodiodes” Appl. Phys. Lett. 72, 3303 (1998)
[6].E. Monroy, M. Hamilton, D. Walker, P. Kung, F.J. San-chez, M. Razeghi,” High-quality visible-blind AlGaN p-i-n photodiodes” Appl. Phys. Lett. 74, 1171 (1999)
[7].M.A. Khan, J.N. Kuznia, D.T. Olson, M. Blasingame, A.R. Bhattarai” High-quality visible-blind AlGaN p-i-n photodiodes” Appl. Phys. Lett. 63, 2455 (1993)
[8].Q. Chen, J.W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M.Z. Anwar,M. Asi Khan, D. Kuksenkov, H. Temkin,” Schottky barrier detectors on GaN for visible–blind ultraviolet detection” Appl. Phys. Lett.70, 2277 (1997)
[9].E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, J.A. Munoz, “AlxGa1 – xN:Si Schottky barrier photodiodes with fast response and high detectivity”Appl. Phys. Lett. 73, 2146 (1998)
[10].D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F.J.Sanchez, J.Diaz, M. Razeghi,” High-speed, low-noisemetal–semiconductor–metal ultraviolet photodetectors based on GaN”1999 Appl. Phys. Lett. 74, 762 (1999)
[11].J. C. Carrano, P. A. Grudowski, C. J. Eiting, R. D. Dupuis,and J.C.Campbell,” Very low dark current metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN epitaxial layers” Appl. Phys. Lett. 70, (1997)
[12].S. W. Seo, K. K. Lee, Sangbeom Kang, S. Huang, William A.Doolittle, N. M. Jokerst, and A. S. Brown,” GaN metal–semiconductor–metal photodetectors grown on lithium gallate substrates by molecular-beam epitaxy“Appl. Phys. Lett.79,1372 ~1374(2001)
[13].J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal– semiconductor–metal photodetectors”, Appl. Phys. Lett, 72, 542 (1998)
[14].J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D.Dupuis, and J.C. Campbell,” Very high-speed metal-semiconductor-metal ultraviolet photodetectors fabricated on GaN” Appl. Phys. 73, 2405 (1999)
[15].E. Monroy, F. Calle, E. Munoz, and F. Omnes, “Effects of Bias on the Responsivity of GaN Metal-Semiconductor-Metal Photodiodes”, Phys. Stat. Sol. 176, 157 (1999)
[16].H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo and M. Umeno, “Back-Illuminated GaN Metal-Semiconductor -Metal UV Photodetector with High Internal Gain”, Jpn. J. Appl. Phy. 40, L505 ( 2001).
[17].C. H. Chen, S. J. Chang, Y. K. Su, Senior Member, IEEE, G. C. Chi,J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, Member,“GaN metal- semiconductor-metal ultra-violet photodetectors with transparent indium-tin-oxide Schottky contacts”, IEEE photon. Technol. Lett. 13, 848 (2001)
[18].H. Z. Xu, Z. G. Wang, M. Kawabe, I. Harrison, B. J. Ansell and C. T. Foxon, “Fabrication and characterization of metal-semiconductor-metal (MSM) ultraviolet photodetectors on undoped GaN/sapphire grown by MBE”, J. Cryst. Growth, 218, 1 (2000)
[19].S. M. Sze, Semiconductor Device Physics and Technology, 160 (1985)
[20].Donald A. Neamen, “Semiconductor Physics and Device3th,” (2003)
[21].S. M. Sze, D. J. Coleman Jr., and A. Loya, “Current transport in metal semiconductormetal (MSM) structures,” Solid-State Electron, 1209 (1971)
[22].U. Diebold. “The surface science of titanium dioxide.” Surf. Sci. 48, 53 (2003)
[23].T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara. “Formation of titanium oxide nanatube.” Langmuir 14, 3160 (1998)
[24].M. Grätzel, “Photoelectrochemicalcells,”Nature, 414, 338 (2001)
[25].L. Zhixun, F. Yan, Z. Xiaofang, Y. Jiannian.”Synthesis of highly ordered Iron/Cobalt nanowure arrays in AAO templates and their structural properties” Science, 107, 91-95 (2008)
[26].N. Itoh, K. Kato et al. , “Preparation of a tubular anodic aluminum oxide membrane“ Science, 117, 189 (1996)
[27].Dmitri Routkevitch, Alexander N. Govyadinov and Peter P. Mardilovich, ” High aspect ratio, High resolution ceramic MEMS,” MEMS. (2000)
[28].O. Jessensky, F. Müller, U. Gösele,“Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina,”Appl. Phys. Lett, 72, 1173 (1998)
[29].T. Ohtsuka and N. Nomura, “The dependence of the optical property of Ti anodic oxide film on its growth rate by ellipsometry“ Corros. Sci, 39, 1253 (1997)
[30].Y. T. Sul, C. B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, and T. Albrektsson, Biomaterials,” Albrektsson, Oxidized titanium screws coated with calcium ions and their performance in rabbit bone”, Int J Oral Maxillofac Implants ,17, 625–634 (2002)
[31].D. J. Blackwood and L. M. Peter, “Stability and open circuit breakdown of passive oxide films on titanium.” Electrochimica Acta, 33, 1143-1147 (1998)
[32].Jan M. Macak, Hiroaki Tsuchiya, Andrej Ghicov, Patrik Schmuki,” Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions”Electro chemistry Communications 7 , 1133–1137 (2005)
[33].Chuanmin Ruan, Maggie Paulose, Oomman K. Varghese, Craig A. Grimes, “ Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte“physical chemistry 109(33), 15754-9 (2005)
[34].Jianling Zhao, Xiaohui Wang, Renzheng Chen, Longtu Li, “Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates “Solid State Communications 134 , 705–710 (2005)
[35].Andrei Ghicov, Jan M. Macak , Hiroaki Tsuchiya , Julia Kunze , Volker Haeublein , Sebastian Kleber , Patrik Schmuki , “ Ion implantation and annealing for an efficient N-doping of TiO(2) nanotubes“Chemical Physics Letters 419, 426–429 (2006)
[36].Xinjian Feng, Karthik Shankar, Oomman K Varghese, Maggie Paulose, Thomas J Latempa, Craig A Grimes.” Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications” Nano letters 8(11, 3781-6 (2008)
[37].M. A. M. Ibrahim, D. Pongkao, and M. Yoshimura, J. “The electrochemical behavior and characterization of the anodic oxide film formed on titanium in NaOH solutions “Solid State Electro chemistry, 6, 341 (2001)
[38].楊于紹, “陽極氧化法制備奈米二氧化鈦薄膜之研究” 國立中興大學材料工程研究所碩士論文 (2001)
[39].Gopal K. Mor, Oomman K. Varghese, Maggie Paulose, Karthik Shankar, Craig A. Grimes, “Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells”Solar Energy Materials & Solar Cells 90 ,2011–2075 (2006)
[40].K.S. Raja , M. Misra, K. Paramguru , “Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium“Electrochimica Acta 51,154–165 (2005)
[41].H.Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo,”Back-illuminated GaN metal-semiconductor-metal UV photodetector with high internal gain” Jpn. J. Appl. Phys. 40, 505 (2001)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊