跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 00:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾孟融
研究生(外文):Meng-Jung Chung
論文名稱:高效能III-V族太陽電池之研製
論文名稱(外文):Study on High Efficiency III-V Solar Cell
指導教授:雷伯薰
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:87
中文關鍵詞:砷化鎵液相沉積法
外文關鍵詞:GaAsLPD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
III-V族化合物半導體太陽電池之理論效率為40%,然而,目前III-V族化合物半導體太陽電池之效率均低於30%。這樣的結果歸因於幾個因素:第一、磊晶層之界面復合效應,不同磊晶層之界面存在著未完全鍵結之界面狀態,這些未完全鍵結之空鍵將會捕捉光電子致使太陽電池之效率降低。第二、磊晶結構包含:窗層、射極層、基極層及背表面電場層,各層之厚度、組成及摻雜濃度上未達到最佳化之條件。第三、接觸電極之設計,為使光電子能夠有效輸出,均勻之電極電場分布是必需的,這可藉由在元件表面整面成長金屬接觸電極來達成,但這將會使得吸光面積縮小,同樣也會使得太陽電池之效能降低。
本論文主要針對提升III-V族化合物半導體太陽電池之效能提升進行研究,研究內容包含三個部分: (a)將不同金屬接觸電極圖形引入太陽電池中III-V族化合物太陽電池中並對元件進行光特性及電特性之量測包括:電壓-電流特性分析、太陽電池之效率、不同溫度之電壓-電流曲線、不同入射太陽光強度之電壓-電流曲線及效率分析;(b)以液相沉積法成長氧化鋅奈米或微米薄膜,期望在未來將氧化鋅薄模成長至聚苯乙烯奈米球之反向圖形中形成氧化鋅光子晶體薄膜,最後再導入III-V族化合物太陽電池中已改善太陽光之入射量,提昇III-V族化合物太陽電池之效能。
我們將引入不同接觸電極圖形包括:十字圖形、柵欄圖形、雙指叉狀圖形、四分之ㄧ圓以進行分析,利用電極結構之設計有效將電場均勻分佈於金屬接觸層上藉以將太陽光在射-基接面所產生之電子-電洞對引出太陽電池,有效提升III-V族化合物太陽電池之短路電流,提昇太陽電池之效能,
在不同接觸電極圖形部分,將之最佳化圖形引入III-V族化合物太陽電池中,由量測III-V族化合物太陽電池之光電特性來證明模擬結果之差異性與正確性並進行修正。經相關量測結果我們發現,十字圖形之最高效率為 15.406 %、Voc= 0.96 V、Isc= 20.25mA/cm2。另外,我們也針對常溫與變溫之電性量測及不同入射之太陽光能量對太陽電池之效能影響,利用實驗數據來佐證最佳化之接觸電極設計及元件之熱穩定度探討。
為了有效提昇太陽電池之效能,我們在砷化鎵基板上利用液相沉積法來成長氧化鋅奈米或微米薄膜。液相沉積法有著低成本、設備簡單、容易大面積化及低溫等優點,尤其是低溫成長可有效避免金屬接觸層之外擴散的現象。對此,我們將成長溫度侷限在90oC以下,並自行配置成長液進行氧化鋅薄膜成長,利用改變成長溫度及不同比例之配方進行最佳化薄膜的成長,然而再利用SEM來了解氧化鋅薄膜之結構。
The theoretical converting efficiency for III-V group compound semiconductor is about 40% for single junction solar cell. However, the converting efficiency for real solar cell device is about 30%. This result is attributed to the following results. First, the interface states are strong dependence of property of epitaxial interface. The density of interface states will cause by the mismatch of different epitaxial layer. The interface states will trap the electron and scatter the injection photon so that decrease the converting efficiency. Second, the thickness and doping concentration of epitaxial layer including window layer, emitting layer, base layer and back surface field layer should be designed for the high performance. Third, to a uniformity distribution of electric field, the contact electrode should be designed. With an overall metal contact layer will make a uniformed distribution of the electric field. However this will resist the injection photon because of screen effect of the metal material and then reduce the converting efficiency of the solar cell.
In this thesis, There are three parts in this thesis including (a) measurement of optical and electric characteristics including room temperature I-V characteristics and efficiency under different injection solar energy, varied I-V and efficiency under 100 mW/cm2 solar energy injection, and (b) growth of zinc oxide thin film by liquid phase deposition (LPD). The zinc oxide will then grow on the window layer of solar cell or in the void composed of polystyrene nanometer ball as the photonic crystal to improvement the incident solar energy so that increase the efficiency of solar cell.
For part (a), the optimum pattern will use as the contact mental pattern. By measuring the optical and electric characteristics, we will modify the designed pattern and compare the difference between the measured and calculated results. Then we will summarize a designed criterion for solar cell mental pattern. The measurement results show that the efficiency, Voc, and Isc, are15.406 %、Voc= 0.96 V、Isc= 20.25mA/cm2, respectively. In addition, we will discuss the effect thermal stability of current-voltage (I-V) characteristics under room and varied temperature and different incident solar energy.
In order to improve the efficiency of solar cell, we will grow zinc oxide thin film on GaAs substrate by liquid phase deposition as the photonic crystal. Liquid phase deposition has the advantages of low cost, easily constructing, large area growth and low growth temperature. The low growth temperature can prevent the doping impurity in contact layer out-diffused. We will set the growth temperature under 90oC, and prepare the growth solution. With varying the growth temperature and stoichiometry of the growth solution, the optimum growth condition will be investigated. Then we will find the crystal structure by scanned electron microscope (SEM).
中文摘要..................................... I
英文摘要..................................... III
目錄......................................... VI
圖目錄...................................... VIII
表目錄....................................... X
符號說明 .....................................XI
第一章 序論.................................. 13
1-1 研究動機............................ 14
1-2 太陽電池介紹............................. 15
1-2.1 非晶矽太陽電池......................... 16
1-2.2 多晶矽太陽電池......................... 16
1-2.3 單晶矽太陽電池......................... 17
1-2.4 砷化鎵太陽電池......................... 17
1-2.5 磷化銦太陽電池......................... 17
1-2.6 薄膜太陽電池 ...........................18
第二章 太陽電池基本理論...................... 19
2-1 太陽電池光吸收反應機制................... 19
2-2 太陽輻射................................. 21
2-3 太陽電池基本結構......................... 22
2-4 太陽電池工作原理......................... 23
2-5 太陽電池之電流特性....................... 26
2-5-1光電流.................................. 28
2-5-2暗電流.................................. 29
2-6 太陽電池轉換效率......................... 30
2-7 溫度效應................................. 32
第三章 元件結構分析與實驗流程................ 34
3-1 砷化鎵太陽電池概述....................... 34
3-2 砷化鎵太陽電池結構....................... 34
3-2-1 表面電極 (Front Contacts).............. 36
3-2-2 接觸層(Cap layer)...................... 36
3-2-3 抗反射層(Anti-reflection Coating, ARC).......... 37
3-2-4 窗層(Window Layers).................... 37
3-2-5 主要吸光層(Active Region )............. 39
3-2-6 背電場(Back Surface Field, BSF.)....... 41
3-2-7 緩衝層(Buffer Layer)................... 41
3-2.8 背電極(Back Contact)................... 41
第四章 實驗結果與討論........................ 47
4-1 砷化鎵太陽電池光電特性量測............... 47
4-2 各種電極之特性量測分析....................50
4-2-1 十字電極圖形之光電特性量測分析.................. 53
4-2-2 雙指叉電極圖形之光電特性量測分析................ 61
4-2-3 四分之一圓電極圖形之光電特性量測................ 67
4-2-4 結論................................... 74
第五章 未來工作.............................. 76
附錄......................................... 77
英文論文大綱................................. 94
簡歷......................................... 99
[1]呂錫民,邱錦松,唐震宸,”台灣再生能源發展狀況與潛力”,工程月刊,第七十三卷,第二期。
[2]工業技術研究院,”全額補助太陽光電系統設計施工規範研討資料”,2004。
[3]J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films. 2004; 451-452: pp. 518-524.
[4]Shultz O, Glunz SW, Goldschmidt JC, Lautenschlager H, Leimenstoll A, Scheiderlochner E, and Willeke GP, “Thermal oxidation processes for high-efficiency multicrystalline silicon solar cells,” 19th European Photovoltaic Solar Energy Conference, Paris, June, 2004.
[5]Jianhua Zhao, Aihua Wang, and Martin A. Green, “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Applied Physics Letters. 1998; 73: pp. 1991-1993.
[6]Venkatasubramanian R, O’Quinn BC, Hills JS, Sharps PR, Timmons ML, Hutchby JA, Field H, Ahrenjiel A, Keyes B, “18.2% (AM 1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge Substrate,” Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washingtion, May 1997; pp. 31-36.
[7]Gale PR, McClelland RW, Dingle DB, Cormley JV, Burgess RM, Kim NP, Mickelsen RA, Stanbery BF, “High-Efficiency GaAs/CuInSe2 and AlGaAs/CuInSe2 thin-film tandem solar cells,” Conference Record, 21stIEEE Photovoltaic Specialists Conference, Kissimimee, May 1990; pp. 53-57.
[8]Keavney CJ, Haven VE, Vernon SM, “Emitter structures in MOCVD InP solar cells,” Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May, 1990; pp. 141-144.
[9]Miguel A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B.Egaas, and R. Nonfi, “Diode Characteristics in State-of-the-art Zno/CdS/Cu(In1-xGax)Se2 Solar Cells, “ Progress in Photovoltaics: Research and Applications, 2005; 13: pp. 209-216.
[10]Wu X, Keane JC, Dhere RG, DeHart C, Duda A, Gessert TA, Asher S, Levi DH, Sheldon P. “16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell,” Conference Proceedings, 17thEuropean Photovoltaic Solar Energy Conference, Munich. October 2001; 22-26: pp. 955-1000.
[11]薒進譯, “高效率太陽電池-從愛因斯坦的光電效應談起”,物理雙月刊, 廿七卷五期, 2005 年10 月。
[12]M. Ladle Ristow, M. S. Kuryla, B. C. Chung, and L. D. Partain, “Cap Thickness Effect on Al0.37Ga0.63As and GaAs Diode Solar Cells,” IEEE Transactions on Electron Devices, 1996; 43: pp. 183-185.
[13]Pallab Bhattacharya, “Semiconductor Optoelectronic Devices, Second Edition,” ISBN 986-7910-58-3
[14]Gregory C. DeSalvo, and Allen M. Barnett, “Investigation of Alternative Window Materials for GaAs Solar Cells,” IEEE Transaction on Electron Devices. 1993
[15]Jenny Nelson, “The Physics of Solar Cells,”2003. ISBN 1-86094-340-3: pp. 93.
[16]Dieter K. Schroder, “Semiconductor Material and Device Characterization, Second Edition,” ISBN 0-471-24139-3: pp. 636.
[17]H. Kurita, T. Takamoto, E. Ikeda, and M. Ohmori, “High-Efficiency Monolithic InGaP/GaAs Tandem Solar Cells with Improved Top-Cell Back-Surface-Field Layers,” IEEE.
[18]H. Cotal, R. Sherif “Temperture Dependence of the IV Parameters from Triple Junction GaInP/InGaAs/Ge Concentrator Solar Cells” IEEE, 1-4244-0016-3,2006
[19]K. Nishioka et al. “Annual Output Estimation of Concentrator Photovoltaic Systems using High-Efficiency InGaP/InGaAs/Ge Triple Junction Solar Cells Based on Experimetal Solar Cell’s Characteristics and Field-Test Meteorological Data,” Solar Energy Materials and Solar Cells, 90 p. 57 (2006).
[20]Green M, Solar Cells: Operating Principles, Technology, and System Applications, Chap. 5, Prentice Hall, Englewood Cliffs, NJ, 85–102 (1982).
[21]R. B. Heller, J. McGannon, and A. H. Weber, J. Appl. Phys. 21, 1283 (1950).
[22]D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960).
[23]T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).
[24]K.M. Lakin, and J.S. Wang, Appl. Phys. Lett. 38, 125 (1981).
[25]J. Ma, F. Ji, H.L. Ma,and S.Y. Li, Thin Solid Films 279, 213 (1996).
[26]M.N. Kamalasanan,and S. Chandra, Thin Solid Films 288, 112 (1995).
[27]Takashi, Minemoto, “Preparation of Zn1-xMgxO films by radio frequency magnetron sputtering”, Thin Solid Films , 372 (200)pp.173-176.
[28]Chul-Hwan Choi, “Effect of post-annealing temperature on structural,optical,and electrical properties of ZnO and Zn1-xOMgxO films by reactive RF magnetron sputtering”, Journalof Crystal Growth , 283 (2005) pp.170-179.
[29]M. de la L. Olvera, “Characteristics of ZnO:F thin films obtained by chemical spray effect of the molarity and doped concentration” Thin Solid Films , 394 (2001) pp.242-249.
[30]Guang-hui Ning, “Structure and optical properties of Mgx Zn1-xO nanoparticles prepared by sol-gel method”, Optical Materials , 27 (2004) pp.1-5.
[31]W. Xinqiang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu,and R.P.H. Chang, J. Cryst. Growth 226, 123 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top