跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林志龍
研究生(外文):Chih-Lung Lin
論文名稱:壹、千里光之成分研究貳、苦茶粕抑菌成分之鑑定
論文名稱(外文):1.Chemical constituents from Senecio scandens2.Characterization of antifungal principles from the tea seed pomace
指導教授:郭賓崇
指導教授(外文):Ping-Chung Kuo
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:138
中文關鍵詞:千里光苦茶粕
外文關鍵詞:Senecio scandensCamellia oleifer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:721
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
千里光(Senecio scandens Buch.-Ham)為台灣產菊科千里光屬之植物,本屬植物全球超過1500種,台灣約有20餘種。台灣產千里光屬植物目前被研究的種類不多,因此本研究選定千里光進行成分研究,希望藉此了解其化學組成。將千里光甲醇粗萃物,經由分配萃取後所得到的生物鹼層、氯仿層及水層,分別利用矽膠管柱層析、Diaion HP-20逆相管柱層析、薄層層析及高效能液相層析進行分離純化,共鑑定出40個化合物,其中有1個為首次發現的新化合物。針對其中含量較多的木脂體類與固醇類化合物進行抗氧化活性試驗,結果發現木脂體類化合物具有不錯的抗氧化活性,值得進一步進行評估。

苦茶粕為油茶籽(Camellia oleifera Abel.)榨完油後所留下來的殘渣,已被報導具有抑制立枯絲核菌(Rhizoctonia solani kühn AG-4)生長的效果,但其抑菌之有效成分尚未確定,故本研究希望分析鑑定苦茶粕中所含有之抑菌成分。將苦茶粕甲醇粗萃物,利用抑菌活性導引分離,經由逆相管柱層析及高效能液相層析純化,共純化得到2個黃酮類化合物與1個三萜皂苷混合物,進一步測試其抑菌活性,希望藉此發現真正具有抑菌活性的成分,以開發新的生物防治資源。
Senecio scandens Buch. -Ham (Asteraceae) is a Formosan Senecio species. This genus is widely distributed throughout the world and comprises more than 1500 species. There are about 20 species in Taiwan and the researches regarding this species were few. Therefore S. scandens was selected as a target for investigations of its phytochemical diversity. The methanol extracts of whole plants of S. scandens were fractionated into alkaloid, chloroform, and water solubles, successively, and further purified using silica gel column chromatography, reversed-phase Diaion HP-20 column chromatography, thin-layer chromatography, and high performance liquid chromatography, respectively. Forty compounds were characterized from the crude extracts of S. scandens and among them compound (1) was a new compound reported for the first time. Furthermore, the isolated lignans and steroids with more quantities were subjected into the examination for their antioxidant activities by DPPH free radical scavenging assay. The results displayed that some of the isolates exhibited significant antioxidant bioactivity and maybe valuable to be evaluated further.

The tea seed pomace is the residue of the seeds of Camellia oleifera after the oil was pressed from the seeds, and it was reported to possess the inhibitory bioactivity of the growth of Rhizoctonia solani kühn AG-4. However, the active principles were remained unknown, so that the present study was aimed to characterize the antifungal constituents in the methanolic extracts of the tea seed pomace. The methanol crude extract of tea seed pomace was purified using reversed-phase column chromatography and high performance liquid chromatography with the aid of bioassay guided fractionation. Totally two flavonoids and one saponin mixture were characterized from the tea seed pomace and were subjected into the examination of the antifungal activity. It could help to determine the active principle and discover new biocontrol sources.
摘要.......................................................i
Abstract..................................................ii
誌謝.....................................................iii
目錄......................................................iv
表目錄...................................................vii
圖目錄..................................................viii
第一篇 千里光之成分研究....................................1
第一章 緒論................................................2
第二章 台灣產千里光屬植物研究之回顧........................4
2.1 千里光之植物形態...................................4
2.2 千里光之藥理研究回顧...............................5
2.3 千里光之成分研究回顧...............................7
2.4 千里光之成分抽取與分離............................13
第三章 千里光成分之化學構造研究...........................20
3.1 (5R,8S,9S,10R,13R,14S,17R)-4,4,13,14-Tetramethyl-
17-((R)-1-methyl-5-oxo-hexyl)-tetradecahydrocyclo
propa[9,10]cyclopenta[a]phenanthren-3-one (28)
之構造研究........................................20
3.2 (27R,S)-Cycloart-28-en-3β,27-diol(32)之構造研
究................................................25
3.3 (20R)-22E-Cholest-4-ene- 3,6-dione(37)&
(20R)-22E-Cholesta-4,22-diene-3,6-dione(38)
之構造研究........................................28
3.4 27-Hydroxycycloart-28-en-3-one(45)之構造研究....30
3.5 Methyl ferulate(51)之構造研究...................32
3.6 5α,8α-Epidioxyergosta-6,22-dien-3β-ol(52)
之構造研究........................................34
3.7 Senescanin A(56)的構造研究......................36
3.8 (-)-Monoepoxylignanolide(57)之構造研究..........41
3.9 Ergosta-4,6,8(14),22-tetraen-3-one(58)
之構造研究........................................44
3.10 (-)-Pinoresinol(65)之構造研究..................46
3.11 (-)-epi-Pinoresinol(66)之構造研究..............49
3.12 6-Methoxy-nicotinic acid(67)之構造研究........52
3.13 其他化合物之構造決定.............................54
第四章 千里光化合物之抗氧化活性試驗研究...................55
第五章 結論...............................................56
第六章 實驗部分...........................................57
6.1 本實驗所使用之儀器與藥品..........................57
6.2 DPPH自由基捕捉實驗(Diphenyl-picryl-hydrazyl
radical scavenging assay..........................59
6.3 千里光成分之萃取與分離............................60
6.3.1 千里光的來源及鑑定............................60
6.3.2 千里光成分之萃取與分離........................60
第七章 光譜數據...........................................67

第二篇 苦茶粕抑菌成分之鑑定...............................83
第一章 緒論...............................................84
1.1 油茶(Camellia oleifera Abel.)簡介 ..............84
1.2 油茶植物形態......................................85
1.3 苦茶粕之成分與效能................................86
1.4 皂苷..............................................87
1.5 油茶三萜皂苷的生物活性............................88
1.6 立枯絲核菌(Rhizoctonia solani kühn AG-4)........89
1.7 植物體內所含之各類抑菌物質........................90
1.8 研究背景及目的....................................91
第二章 萃取分離與抑菌活性測試.............................92
2.1 苦茶粕抑菌試驗與活性導引分離(bio-guided
isolation).......................................92
2.1.1 甲醇粗萃取物與各畫分之抑菌活性測試............92
2.1.2 活性畫分(Fraction 5)之抑菌活性測試..........97
2.1.3 活性畫分(Fraction 1)之抑菌活性測試.........102
2.1.4 苦茶粕甲醇萃取物之成分分離...................106
2.2 化合物之抑菌試驗.................................108
第三章 苦茶粕化合物構造之研究............................111
3.1 三萜皂苷混合物(68)的結構研究...................111
3.2 Camelliaside A(69)的構造研究...................113
3.3 Camelliaside B(70)的構造研究...................116
第四章 結論..............................................119
第五章 實驗部分..........................................120
5.1 本實驗所使用之儀器與藥品.........................120
5.2 研究材料的製備...................................121
5.2.1 供試菌株.....................................121
5.2.2 接種源製備...................................121
5.2.3 苦茶粕成分萃取、分離與鑑定...................122
5.2.4 苦茶粕各畫分對R. solani kühn AG-4菌絲生長的
影響.........................................124
5.2.5 由苦茶粕純化所得到成分對R. solani kühn AG-4
菌絲生長的影響...............................125
第六章 光譜數據..........................................126
參考文獻.................................................128
英文論文大綱.............................................136
1. 臺灣藥用植物資源名錄,行政院衛生署中醫藥委員會編,千里及
p. 465 (2003).
2. Xu, X. B.; Lin, H. Y.; Feng, Y. S.; Chen, J. J.,
Preliminary phytochemical test of Senecio scandens
Buch.–Ham. and examination on chemical composition of
its antimicrobial part. Journal of Traditional Chinese
Veterinary Medicine 25, 10-13 (2006).
3. 高學敏,中藥學,上冊[M],北京:人民衛生出版社 p. 557
(2000).
4. 連文琰; 蕭培根,原色中藥植物圖鑑,pp. 391,452,498,
506,511 (1998). and references cited therein.
5. Chen, J. J.; Yu, Z. J.; Lin, H. Y.; Xu, X. B., Bone-
marrow micronucleus test of extract from Senecio
scandens Buch. -Ham. in mice. Journal of Traditional
Chinese Veterinary Medicine 26, 20-22 (2007) and
references cited therein.
6. Peng, C. I.; Chung, S. W., In “ Flora of Taiwan”, vol.
IV, second edition, Editorial Committee of the Flora
Taiwan, Department of Botany, National Taiwan
University, Taipei, pp. 1051-1062 (1998).
7. 趙中振; 蕭培根,當代藥用植物典,香港賽馬會中藥研究院 4,
449-452 (2007).
8. Chen, J. J.; Nie, F. H.; Lin, H. Y.; Yu, Z. J.; Liang,
Z. F.; Xu, X. B.; Li, H., Analgesic effect of Senecio
scandens extract and its mutation test in mice. Nat.
Sci. Ed. 3, 49-54 (2007).
9. Yu, J. J.; Nie, F. H.; J., C. J.; Lin, H. Y.; Xu, X. B.;
Li, H., 千里光提取物的小鼠精子畸形試驗. Journal of
Traditional Chinese Veterinary Medicine 26, 40-42
(2007).
10. Li, H.; Yu, Z. J.; Lin, H. Y.; Chen, J. J., Analysis on
the chemical compositions of antibacterial extract from
Senecio scandens Buch. -Ham. and tests on its acute
toxicity. Journal of Traditional Chinese Veterinary
Medicine 27, 7-9 (2008).
11. Lu, S. T.; Lin, C. N.; Wu, T. S.; Shieh, D. C.,
Alkaloids of Senecio taiwanensis Hayata and Senecio
morrisonensis Hayata. J. Chin. Chem. Soc. (Taipei,
Taiwan). 19, 127-129 (1972).
12. Li, S. L.; Lin, G.; Fu, P. P.; Chan, C. L.; Li, M.;
Jiang, Z. H.; Zhao, Z. Z., Identification of five
hepatotoxic pyrrolizidine alkaloids in a commonly used
traditional Chinese medicinal herb, Herba Senecionis
scandentis (Qianliguang). Rapid Commun. Mass Spectrom.
22, 591-602 (2008).
13. Valadon, L. R. G.; Mummery, R. S., Carotenoids of
certain compositae flowers. Phytochemistry 6, 983-988
(1967).
14. Cabrera, G. M.; Seldes, A. M., Short side-chain
cycloartanes from Tillandsia usneoides. Phytochemistry
45, 1019-1021 (1997).
15. Kitajima, J.; Kimizuka, K.; Tanaka, Y., New sterols and
triterpenoids of Ficus pumila fruit. Chem. Pharm. Bull.
46, 1408-1411 (1998).
16. Kontiza, I.; Abatis, D.; Malakate, K.; Vagias, C.;
Roussis, V., 3-Keto steroids from the marine organisms
Dendrophyllia cornigera and Cymodocea nodosa. Steroids
71, 177-181 (2006).
17. Cabrera, G. M.; Gallo, M.; Seldes, A. M., Cycloartane
derivatives from Tillandsia usneoides. J. Nat. Prod.
59, 343-347 (1996).
18. Lee, T. H.; Chioub, J. L.; Lee, C. K.; Kuo, Y. H.,
Separation and determination of chemical constituents
in the roots of Rhus javanica L. var. roxburghiana. J.
Chin. Chem. Soc. 52, 833-841 (2005).
19. Jinming, G.; Lin, H.; Jikai, L., A novel sterol from
chinese truffles Tuber indicum. Steroids 66, 771-775
(2001).
20. Yue, J. M.; Chen, S. N.; Lin, Z. W.; Sun, H. D.,
Sterols from the fungus Lactarium volumus.
Phytochemistry 56, 801-806 (2001).
21. Velde, V. V.; Lavie, D.; Gottlieb, H. E.; Perold, G.
W., Scheinmann, F., Synthesis and 1H-NMR spectroscopic
analysis of some 3,7-dioxabicyclo-[3.30] octane
lignans. J. Chem. Soc. Perkin Trans. I, 1159-1164
(1984).
22. Kobayashi, M.; Krishna, M. M.; Ishida, K.; Anjaneyulu,
V., Marine sterols. XXII. occurrence of 3-oxo-4,6,8(14)-
triunsaturated steroids in the sponge Dysidea herbacea.
Chem. Pharm. Bull. 40, 1, 72-74 (1992).
23. Fujimoto, H.; Nakamura, E.; Okuyama, E.; Ishibashi, M.,
Six immunosuppressive features from an ascomycete,
zopfiella longicaudata, found in a screening study
monitored by immunomodulatory activity. Chem. Pharm.
Bull. 52, 1005-1008 (2004).
24. Lee, J. S.; Kim, H. J.; Woo, E. R.; Park, Y. A.; Lee,
Y. S.; Park, H., 7-Feruloylloganin: an iridoid
glucoside from stems of Lonicera insularis. Planta Med.
67, 99-102 (2001).
25. Guz, N. R.; Stermitz, F. R., Spectral comparisons of
coniferyl and cinnamyl alcohol expoxide derivatives
with a purported cis-epoxyconiferyl alcohol isolate.
Phytochemistry 54, 897-899 (2000).
26. Nishida, K.; Sumimoto, M.; Kondo, T., Studies on the
chemical constituent of bark of symplacos lucida S. et
Z. (II nd Rep.) on the hydrolysis of the glucoside. J.
Japan Forest Soc. 33, 235-239 (1951).
27. Okuyama, E.; Suzumura, K.; Yamazaki, M.,
Pharmacologically active components of Todopon puok
(Fagraea racemosa), a medicinal plant from Borneo.
Chem. Pharm. Bull. 43, 2200-2204 (1995).
28. Dainter, R. S.; Suschitzky, H.; Wakefield, B.,
Contrasting reactions of 2,6-dichloro-4-
trichloromethylpyridine, 2,6-dichloro-3-
trichloromethylpyridine and their N-oxides with
nucleophiles. J. Chem. Soc. Perkin Trans. I, 227-233
(1998).
29. Arai, Y.; Koide, N.; Ohki, F.; Ageta, H.; Yang, L. L.;
Yen, K. Y., Fern constituents: triterpenoids isolated
from leaflets of Cyathea spinulosa. Chem. Pharm. Bull.
42, 228-232 (1994).
30. Barrero, A. F.; Sanchez, J. F.; Alvarez-Manzaneda, E.
J.; Dorado, M. M.; Haidour, A., Terpenoids and sterols
from the wood of Abies Pinsapo. Phytochemistry 32, 1261-
1265 (1993).
31. Robbins, R. J.; Schmidt, W. F., Optimized synthesis of
four isotopically labeled (13C-enriched) phenolic acids
via a malonic acid condensation. J. Label Compd.
Radiopharm. 47, 797-806 (2004).
32. Bandaranayake, W. M., Terpenoids of Canarium
zeylanicum. Phytochemistry 19, 255-257 (1980).
33. Georges, P.; Sylvestre, M.; Ruegger, H.; Bourgeois, P.,
Ketosteroids and hydroxyketosteroids, minor metabolites
of sugarcane wax. Steroids 71, 647-652 (2006).
34. Lin, Y. L.; Chen, Y. L.; Kuo, Y. H., A three new
flavonoids, 3’-methoxylupinifolin, laxifolin, and
isolaxifolin from the roots of Derris laxiflora Benth.
Chem. Pharm. Bull. 39, 3132-3135 (1991).
35. Krohn, K.; Kanuer, B., The diastereoselectivity of
zirconium alkoxide catalysed Meerwein-Ponndorf-Verley
reductions. Liebigs Ann. 52, 1347-1351 (1995).
36. Zhang, X.; Geoffroy, P.; Miesch, M.; Julien-David, D.;
Raul, F.; Aoud´e-Werner, D.; E., M., Gram-scale
chromatographic purification of β-sitosterol,
synthesis and characterization of β-sitosterol oxides.
Steroids 70, 886-895 (2005).
37. Sun, X. B.; Zhao, P. H.; Xu, Y. J.; Sun, L. M.; Cao, M.
A.; Yuan, C. S., Chemical constituents from the roots
of Polygonum bistorta. Chem.Nat. Compd. 43, 5, 563-566
(2007).
38. Seldes, A. M.; Deluca, M. E.; Gros, E. G.; Rovirosa,
J.; San-Martin, A.; Darias, J., Steroids from aquatic
organisms, XLX. new sterols from the antarctic sponge
Artemisina apollinis. Z. Naturforsch 45b, 83-86 (1990).
39. Chen, C. Y.; Chang, F. R.; Teng, C. M.; C., W. Y.,
Cheritamine, a new N-fatty acyl tryptamine and other
constituents from the stems of Annona cherimola. J.
Chin. Chem. Soc. 46, 77-86 (1999).
40. Machida, K.; Kikuchi, M., Norisoprenoids from Viburnum
dilatatum. Phytochemistry 41, 1333-1336 (1996).
41. El-Batta, A.; Jiang, C.; Zhao, W.; Anness, R.; Cooksy,
A. L.; Bergdahl, M., Wittig reactions in water media
employing stabilized ylides with aldehydes. Synthesis
of α,β-unsaturated esters from mixing aldehydes, α-
bromoesters, and Ph3P in aqueous NaHCO3. J. Org. Chem.
72, 5244-5259 (2007).
42. Lee, C. K.; Lu, C. K.; Kuo, Y. H.; Chen, J. Z.; Sun, G.
Z., New prenylated flavones from the roots of Ficus
beecheyana. J. Chin. Chem. Soc. 51, 437-441 (2004).
43. Isik, E.; Sabudak, T.; Oksuz, S., Flavonoids from
Trifolium resupinatum var. mictocephalum. Chem. Nat.
Compd. 43, 614-615 (2007).
44. Alam, M. S.; Chopra, N.; Ali, M.; Niwa, M., Oleanen and
stigmasterol derivatives from Ambroma augusta.
Phytochemistry 41, 1197-1120 (1996).
45. Jeremy, I. L.; Mila, T. D., Rapid, one-pot conversion
of arylfluorides into henols with 2-butyn-1-oland
potassium t-butoxide in DMSO. Synth. Commun. 32, 1401-
1406 (2002).
46. Kondo, M., The nuclear magnetic resonance study of
several o-disubstituted benzenes. Bull. Chem. Soc. Jpn.
45, 9, 2790-2793 (1972).
47. Barrall, E. M.; B., R. L., Differential thermal
analysis of organic compounds. Effects of diluting
agents. Anal. Chem. 34, 9, 1106-1111 (1962).
48. Lee, C. K.; Chang, M. H., The chemical constituents
from the heart wood of Eucalyptus citriodora. J. Chin.
Chem. Soc. 47, 555-560 (2000).
49. Crestini, C.; D''Auria, M., Singlet oxygen in the
photodegradation of lignin models. Tetrahedron 53, 7877-
7888 (1997).
50. Fridovic, I., The biology of oxygen radicals. Science
201, 875-880 (1978).
51. Cook, N. C.; Samman, S., Flavonoids-chemistry,
metabolis, cardioprotective effects, and dietary
sources. J. Nutr. Biochem. 7, 66-76 (1996).
52. Huang, M. T.; Ho, C. T.; Lee, C. Y., ACS symposium
series 507,American Chemical Society, Washington, DC,
(1992).
53. Ko, F. N.; Liao, C. H.; Kuo, Y. H.; Lin, Y. L.,
Antioxidant properties of demethyl-diisoeugenol.
Biochim. Biophys. Acta 1258, 145-152 (1995).
54. Mellors, A.; L., T. A., The inhibition of mitochondrial
peroxidation by ubiquinone and ubiquinol. J. Biol.
Chem. 241, 4353-4356 (1966).
55. 劉芳綺,油茶籽甲醇萃取物主要成份之鑑定,國立嘉義大學應用
化學研究所碩士論文 (2006).
56. 陳定如,山茶、金花茶、油茶、廣寧油茶,廣東園林pp. 77-78
(2008).
57. Chang, Y. H.; Shyu, S. L., Extraction and safety
evaluation of antioxidant compounds obtained from tea
seed cake. Taiwanese J. Agric. Food Chem. 45, 264-271
(2007).
58. 梁鶚,經濟植物集。豐年社,臺北,台灣,85-92 (1987).
59. Wang, Y. Q.; Wu, X. J.; Li, H. B.; Pang, Y.; L., T.;
Feng, B. M., Research of Camellia Linn. on the used to
drugs. Journal of Dalian University 27, 47-55 (2006).
60. 古國隆,苦茶油抗菌因素之研究,86年度國科會專題研究計畫成
果報告 (1998).
61. 李健捀;陳榮五,水稻有機栽培技術,台中區農業專訊,21,
pp. 7-8 (1997).
62. 楊政川,油茶,經濟植物集。豐年社,臺北,台灣,pp. 85-
92. (1988)
63. 陳永培;鄭鳴金;朱�畯^,油茶餅中油茶皂素抗突變初步研究,
福建中醫藥, 20, p.19 (1989).
64. Chen, J. F.; He, X. L.; Li, F.; Chem, H.; Wu, J. Z.;
Guo, Y. H., Experimental research on antifertility
function of sasanqua sponin sterilant against rodent.
Chin. J. Vector Bio. & Control. 17, 11-14 (2006).
65. 侯如燕;宛曉春;黃繼軫,油茶皂苷標準品的制備及定量方法的
比較,食品與發酵工業 31, 62-65 (2005).
66. Carling, D. E.; Baird, R. E.; Kuninaga, S.; Gitaitis,
R. D., Characterization of anastomosis group (AG) 13 of
Rhizoctonia solani(Abstract). Phytopathology 89:S11.
(1999) .
67. Tu, C. C.; Hsieh, T. F.; Chang, Y. C., Characterization
of Rhizoctonia isolate, disease occurrence and
management in vegetable crop. Plant Pathol. Bull. 5, 69-
79 (1996).
68. Nielsen, K. K.; Nielsen, J. E.; Madrid, S. M.;
Mikkelsen, J. D., Characterization of a new antifungal
chitin-binding peptide from sugar beet leaves. Plant
Physiol 113, 83-91 (1997).
69. 林邱俐,十字花科蔬菜炭疽病菌之生物特性與防治。國立中興大
學植物病理學系碩士論文, p. 72 (2001).
70. Gogol, P.; Baruah, P.; Nath, S. C., Antifungal activity
of essential oil of Litsea cubeba. Pers. J. Essent. Oil
Res. 9, 213-215 (1997).
71. Fewell, A. M.; Roddick, J. G., Interactive antifungal
activity of the glycoalkaloids alpha-solanine and alpha-
chaconine. Phytochemistry 33, 323-328 (1993).
72. Sen, S.; Makkar, H. P. S.; Beck, K., Alfalfa saponins
and their implication in animal nutrition. J. Agric.
Food Chem. 46, 131-140 (1998).
73. 沈再發,甘藍,pp. 309-312。台灣農家要覽:農作篇(二),
農業委員會台灣農家要覽增修定再版策劃委員會編,台北,財團
法人豐年社出版 p. 69 (1995).
74. 行政院農委會,93年農業統計年報,行政院農委會出版p. 297
(2005).
75. Stephens, C. T.; Narr, L. J.; Schmitthenner, A. F.;
Powell, C. C., Characterization of Rhizoctonia isolates
associated with damping-off beddling plants. Plant Dis.
66, 700-703 (1982).
76. 黃振文,孫守恭,植物病害彩色圖鑑。台中,世維出版社
p.160. (1998)
77. Vaughn, S. F.; Spencer, G. F., Antifungal activity of
nature compound against thiabendazole-resistant
Fusarium sambucinum strains. J. Agric. Food Chem. 42,
200-203 (1994).
78. 楊正偉,苦茶粕防治甘藍幼苗立枯病之效果與其有效成分之鑑
定,國立中興大學植物病理學系碩士論文 (2006).
79. 資料來源:http://www.tactri.gov.tw/htdocs/ppmtable/#cat3
80. Khan, R. H.; Rastogi, R. C., Condensed heterocycles:
synthesis and antifungal activity of π-deficient
pyrimidines linked with π-rich heterocycles. J. Agric.
Food Chem. 39, 2300-2303 (1991).
81. Marby, T. J.; Markham, K. R.; Thomas, M. B., The
systematic identification of flavonoids. Springer
Verlag, New York (1970).
82. Park, J. S.; Rho, H. S.; Kim, D. H. Chang, I. S.,
Enzymatic preparation of kaempferol from green tea seed
and its antioxidant activity. J. Agric. Food. Chem. 54,
2951-2956 (2006).
83. 謝廷芳,花卉真菌性病害之診斷,植物重要防疫檢疫病害診斷鑑
定技術研習會專刊(三),1-22 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top