跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 20:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何忠諺
研究生(外文):Chung-Yen Ho
論文名稱:不同環境熱處理對於氮化鋁-氧化鋅共濺鍍薄膜之特性影響
論文名稱(外文):Effect of the AlN-ZnO cosputtered films annealed under various atmosphere
指導教授:劉代山
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:63
中文關鍵詞:氮化鋁共摻雜氧化鋅薄膜p型氧化鋅薄膜螢光光譜化學鍵結特性活化能
外文關鍵詞:Al-N codoped zinc oxide filmsp-type zinc oxide thin filmPL spectrumchemical bond characteristicactivation energy
相關次數:
  • 被引用被引用:4
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用射頻磁控共濺鍍系統,同時濺鍍氧化鋅與氮化鋁靶材,製作未摻雜氧化鋅與氮化鋁-氧化鋅共濺鍍薄膜,再藉由不同環境熱處理活化薄膜中的摻雜原子,量測熱處理後薄膜之電特性、光激發螢光發光特性、化學鍵結特性以及薄膜結晶構造,分析薄膜內部自由載子的形成機制與型態,並利用變溫霍爾與低溫螢光光譜推估摻雜離子之活化能,進而瞭解雜質活化機制活化。研究結果顯示,未摻雜氧化鋅薄膜在經過不同環境熱處理後仍為n型導電型態,由變溫霍爾量測與室溫光激發螢光光譜可以發現其施體活化機制為氧化鋅本質缺陷之氧空位(VO)所主宰,而氮化鋁-氧化鋅共濺鍍薄膜在不同環境熱處理下具有不同的活化機制。氮氣環境熱處理後之共濺鍍薄膜其電特性量測結果為穩定p型薄膜,且由VO- NO相關的輻射躍遷所主宰(~1.93 eV),而氧氣環境熱處理之共濺鍍薄膜雖然可以有效補償薄膜中的氧空位缺陷,但無法獲得特性良好的p型導電型態,真空環境熱處理下之共濺鍍薄膜呈現高濃度之n型導電型態。藉由變溫霍爾量測,推論出的受體氮原子NO機制活化能為160 meV,施體鋁原子AlZn機制活化能為52 meV。此外,低溫螢光光譜量測在氮氣環境熱處理後的共濺鍍薄膜量測於3.333 eV處為受體氮原子相關之束縛態受體激子的螢光峰值,在真空環境熱處理後的共濺鍍薄膜則量出於3.362 eV處為施體鋁原子相關之束縛態施體激子的螢光峰值,並由光子能量公式推論受體氮原子活化能為168 meV,此外,由阿倫紐斯線性理論推估受體激子活化能Ea約為16 meV,並根據Haynes rule推算受體氮離子EA約160 meV。而利用光電子能譜儀量測結果,從氮氣環境熱處理後的共濺鍍薄膜的N1s光電子軌域也可以觀察到位於398.3 eV為氮原子活化(NO)之束縛能。XRD量測結果顯示薄膜經過熱處理後結晶性變佳且為多晶型態,在氮氣環境熱處理後的共濺鍍薄膜ZnO(101)晶格峰值往低角度移動,顯示氮摻雜造成結晶相的變化。
Al-N codoped zinc oxide films were prepared using a radio-frequency magnetron cosputtering system using AlN and ZnO targets. The samples were annealed to achieve dopant atom activation in different ambient environments. Type and formation mechanism of free carrier in thin film were studied by electricity measurement , PL characteristic and chemical bonds. It can concluded the activation energy of the nitrogen (NO) acceptor and further understand the impurity activation mechanism at different annealing conditions with the aim of stable p-type ZnO.The undoped zinc oxide thin film after to pass through the different environment annealed treatment, By temperature-dependent Hall to gauge and the room temperature photoexcitation fluorescence spectrum knew that, it executes the body to activate the mechanism to control for oxygen vacancy (VO), but the aluminium nitride - zinc oxide cosputtered thin film to have the different activation mechanism under the different environment annealed treatment. After the nitrogen environment annealed treatment cosputtered thin film its electricity characteristic gauging result for the stable p thin film, also controls (~1.93 eV) by the NO correlation radiative transition, but the oxygen environment annealed treatment cosputtered thin film although may compensate in the thin film effectively the oxygen vacancy flaw, but is unable to obtain the characteristic good p electric conduction state, under the vacuum environment annealed treatment cosputtered thin film to present n of electric conduction state the highly concentrated, Finally the atmospheric environment annealed treatment cosputtered thin film to be insufficient to reverse the thin film the electric conduction state.Because of temperature-dependent Hall to gauge, the acceptor nitrogen atom machine-made activation energy which calculates is 160 meV, the aluminium atom machine-made activation energy is 52 meV. Moreover, the low temperature fluorescence spectrum gauging altogether splashes after the nitrogen environment annealed treatment plates the thin film to gauge and A0X of the acceptor nitrogen atom correlation fluorescence peak value, Altogether splashes after the vacuum environment annealed treatment plates the thin film then the quantity aluminium leaves the atomic correlation D0X of with fluorescence peak value, and calculates the acceptor nitrogen atom activation energy based on the photon energy formula is 168 meV. In addition, use light electronic energy spectrometer gauging result, Also may observe from the N1s photoelectron axle territory to the nitrogen atom activates binding energy of the (NO) is 398.3 eV. The XRD gauging result showed the thin film crystallizes the change in sexuality after the annealed treatment to be good, ZnO(101) peak toward diffraction low angle, and altogether splashes after the nitrogen of new structure.
中文摘要 ………………………………………………………… i
英文摘要 ………………………………………………………… ii
誌謝 ………………………………………………………… iv
目錄 ………………………………………………………… v
表目錄 ………………………………………………………… vii
圖目錄 ………………………………………………………… viii
第一章 緒論…………………………………………………… 1
1.1 研究回顧……………………………………………… 1
1.2 研究動機……………………………………………… 3
第二章 理論基礎……………………………………………… 5
2.1 電漿理論……………………………………………… 5
2.2 濺鍍原理……………………………………………… 6
2.3 薄膜成核理論………………………………………… 6
2.4 氧化鋅薄膜…………………………………………… 7
2.5 氮化鋁薄膜…………………………………………… 9
第三章 實驗製程方法與步驟………………………………… 14
3.1 實驗流程……………………………………………… 14
3.2 實驗靶材……………………………………………… 14
3.3 實驗系統說明………………………………………… 15
3.4 鍍膜步驟及參數……………………………………… 16
3.5 薄膜特性量測與分析………………………………… 18
第四章 結果與討論…………………………………………… 28
4.1 未摻雜氧化鋅………………………………………… 28
4.1.1 未摻雜氧化鋅經過不同環境熱處理後電特性分析… 28
4.1.2 未摻雜氧化鋅經過不同環境熱處理後光學特性分析 29
4.1.3 未摻雜氧化鋅經過不同環境熱處理後結晶特性分析 30
4.2 氮化鋁-氧化鋅共濺鍍薄膜…………………………… 31
4.2.1 氮化鋁-氧化鋅共濺鍍薄膜經過不同環境熱處理後電特性分析……………………………………………… 31
4.2.2 氮化鋁-氧化鋅共濺鍍薄膜經過不同環境熱處理後光學特性分析…………………………………………… 32
4.2.3 氮化鋁-氧化鋅共濺鍍薄膜經過不同環境熱處理後化學鍵結分析…………………………………………… 35
4.2.4 氮化鋁-氧化鋅共濺鍍薄膜經過不同環境熱處理後結晶特性分析…………………………………………… 36
第五章 結論…………………………………………………… 53
參考文獻 ………………………………………………………… 54
Extended Abstract…………………………………………………… 60
簡歷 ………………………………………………………… 63
【1】J. H. Lim, D. K. Hwang, H. S. Kim, J. Y. Oh, J. H. Yang, R. Navamathavan, and S. J. Park, “Low-resistivity and transparent indium-oxide-doped ZnO ohmic contact to p-type GaN”, Appl. Phys. Lett., 85, p. 6191 (2004).
【2】K. Y. Ban, H. G. Hong, D. Y. Noh, T. Y. Seong, J. O. Song, and D. Kim, “Use of an indium zinc oxide interlayer for forming Ag-based Ohmic contacts to p-type GaN for UV-light-emitting diodes”, Semicond. Sci. Technol. 20, p. 921 (2005).
【3】R. K. Shukla, A. Srivastava, A. Srivastava, and K. C. Dubey, “Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition”, J. Cryst. Growth, 294, p. 427 (2006).
【4】D. S. Liu, C. H. Lin, B. W. Huang, and C. C. Wu, “Electrical, Optical and Material Properties of ZnO-doped ITO Films Prepared by Radio Frequency Magnetron Cosputtering System at Room Temperature”, Jpn. J. Appl. Phys., 45, p. 3526 (2006).
【5】Z. Z. Ye, Q. Qian, G. D. Yuan, B. H. Zhao, D. W. Ma, “Effect of oxygen partial ratios on the properties of Al-N co-doped ZnO thin films”, J. Cryst. Growth, 274, pp. 178-182 (2005).
【6】S. J. So, C. B. Park, “Diffusion of phosphorus and arsenic using ampoule-tube method on undoped ZnO thin films and electrical and optical properties of P-type ZnO thin films”, J. Cryst. Growth, 285, pp. 606-612 (2005).
【7】C. Wang, Z. Ji, J, Xi, J, Du, and Z. Ye, “Fabrication and characteristics of the low-resistive p-type ZnO thin films by DC reactive magnetron sputtering”, Mater. Lett., 60, p. 912 (2006).
【8】M. L. Tu, Y. K. Su, and C. Y. Ma, “Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering”, J. Appl. Phys., 100, p. 053705 (2006).
【9】J. G. Lu, L. P. Zhu, Z.Z. Ye, F. Zhuge, B. H. Zhao, J. Y. Huang, L. Wang, J. Yang, “ p-type ZnO films by codoping of nitrogen and aluminum and ZnO-based p-n homojunctions”, J. Cryst. Growth, 283, pp. 413-417 (2005).
【10】J. G. Lu, L. P. Zhu, Z. Z. Ye, Y. J. Zeng, F. Zhuge, B. H. Zhao, D. W. Ma, “Improved N–Al codoped p-type ZnO thin films by introduction of a homo-buffer layer”, J. Cryst. Growth, 274, pp. 425-429 (2005).
【11】J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao and J. Huang, “p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations”, Mater. Lett., 57, p. 3311 (2003).
【12】J. H. Yang, H. S. Kim, J. H. Lim, D. K. Hwang, J. Y. Oh, and S. J. Park, “The Effect of Ar/O2 Sputtering Gas on the Phosphorus-Doped p-Type ZnO Thin Films”, J. Electrochem. Soc., 153, G242 (2006).
【13】許加昇, “利用射頻磁控共濺鍍系統沉積鋁+氮共摻雜之氧化鋅薄膜” , 國立虎尾科技大學光電與材料科技研究所 (2007)。
【14】D. S. Liu, C. S. Sheu, C. T. Lee, “Aluminum-nitride codoped zinc oxide films prepared using a radio-frequency magnetron cosputtering system”, J. Applied Physics 102, 033516 (2007).
【15】Li-Wen Lai, Yong-Hao Lin, Ching-Ting Lee, “Investigation of nitrogen function of Aluminum Nitride codoped ZnO films deposited using cosputter system ”
【16】X.Q. Wei_, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, C. Yang, “Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2”, Physica B 388 145–152 (2007).
【17】Dae-Kue Hwang, Min-Suk Oh, Jae-Hong Lim, Chang-Goo Kang, and Seong-Ju Park, “Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO”, APL 90, 021106 (2007)
【18】莊達人, “VLSI 製造技術” 高立圖書有限公司出版, 新科技經銷, 民國87年7月10日四版四刷。
【19】Hong Xiao著,羅正忠 張鼎張 譯, “半導體製程技術導論”台灣
培生教育出版股份有限公司 (2003)。
【20】J. Venables, “Nucleation and Growth of Thin films”, Reports on
Progress in Physics, Vol.47 p. 399 (1984).
【21】D. J. Leary, J. O. Barnes, and A. G. Jordan, “Calculation of Carrier Concentration in Polycrystalline Films as a Function of Surface Acceptor State Density: Application for ZnO Gas Sensors” J. Electrochemical. Soc, Vol.29 pp. 1382-1386 (1982).
【22】S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors”, J. Cryst. Growth, 225, p. 110 (2001).
【23】A. Mitra and R. K. Thareja, “Photoluminescence and ultraviolet laser emission from nanocrystalline ZnO thin films”, J. Appl. Phys., 89, p. 2025 (2001).
【24】J. H. Lim, D. K. Hwang, H. S. Kim, J. Y. Oh, J. H. Yang, R. Navamathavan, and S. J. Park, “Low-resistivity and transparent indium-oxide-doped ZnO ohmic contact to p-type GaN”, Appl. Phys. Lett., 85, p. 6191 (2004).
【25】甘炯耀,”ZnO之薄膜製備與發光性質研究”,國立清華大學
材料科學工程學系碩士論文,(2001)
【26】J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang and .Liu, “Luminescence properties of ZnO films annealed in growth ambient and oxygen”, J. Crystal Growth, vol. 263, pp.269-272 (2004)
【27】H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim and S. Y. Lee, “Variation of light emitting properties of ZnO thin films depending on post-annealing temperature”,Mater. Sci. Eng. B, Vol. 102, pp. 313-316 (2003)
【28】B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions”, J. Electrochem. Soc., vol. 148(3), pp. G110-G113 (2001)
【29】S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, “Comparison of the optical properties of ZnO thin films grown on variousm substrates by pulsed laser deposition”, Appl. Surf. Sci., vol.168, pp. 332-334 (2000).
【30】C. Caliendo, G. Saggio, P. Verardi and E. Verona, “Piezoelectric AlN Film for SAW Devices Application”, IEEE, Ultrasonics symposium, pp. 249-252, 1993.
【31】E. Janczak-Bienk, H. Jensen and G. Sorensen, Mater. Sci and Eng. A140, p. 696, 1991.
【32】 伍秀菁,汪若文,林美吟 編輯,”真空技術與應用”,全華科技圖書公司(2005)
【33】 施敏 著,”半導體元件物理與製作技術”, 國立交通大學出版社(2004)
【34】 汪建民 主編,”材料分析”,中國材料科學學會 (2005)
【35】 劉如熹、紀喨勝,”紫外光發光二極體用螢光粉介紹”,全華科技
(2003).
【36】X. M. Fan, J. S. Lian, Z. X. Guo and H. J. Lu, “Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si(1 1 1) substrates”, Appl. Surf. Sci. 239, pp. 176-181 (2005).
【37】Z. Fang, Y. Wang, D. Xu, Y. Tan and X. Liu, “ Blue luminescent center in ZnO films deposited on silicon substrates”, Opt. Mater. 26, pp. 239-242 (2004).
【38】Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air”, J. Appl. Phys. 98, p. 041301 (2005).
【39】J. G. Liu, L. P. Zhu, Z. Z. Ye, Y. J. Zeng, F. Zhuge, B. H. Zhao and D. W. Ma, “Improved N-Al codoped p-type ZnO thin films by introduction of a homo-buffer layer”, J. Cryst. Growth, 274, pp. 425- 429 (2005).
【40】Xiang-Bai Chen, Jesse Huso, John L. Morrison, and Leah Bergman, “The properties of ZnO photoluminescence at and above room temperature”, JOURNAL OF APPLIED PHYSICS 102, 116105 (2007).
【41】Bixia Lin and Zhuxi Fu, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, JAP VOLUME 79, NUMBER 7 (2001).
【42】X.Q. Wei_, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, C. Yang, “Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2”, Physica B 388 (2007) 145–152.
【43】Haiping He, Fei Zhuge, Zhizhen Ye, Liping Zhu, Binghui Zhao and Jingyun Huang, “Defect-related vibrational and photoluminescence spectroscopy of a codoped ZnO:Al :N film”, J. Phys. D: Appl. Phys. 39 (2006) 2339–2342.
【44】D. C. Look, B. Claflin1, Ya. I. Alivov, and S. J. Park, “The future of ZnO light emitters”, phys. stat. sol. (a) 201, No. 10, 2203–2212 (2004).
【45】H. P. He, H. P. Tang, Z. Z. Ye, L. P. Zhu, B. H. Zhao, L. Wang, and X. H. Li,” Temperature-dependent photoluminescence of quasialigned Al-doped ZnO nanorods”, APPLIED PHYSICS LETTERS 90, 023104 (2007).
【46】H. Wang a, H.P. Ho, K.C. Loa, K.W. Cheah,” Preparation of p-type ZnO films with (N,Ga) co-doping by MOVPE”, Materials Chemistry and Physics 107 (2008) 244–247.
【47】Haiping Tang, Zhizhen Ye, Haiping He, “Comparative photoluminescence study on p-type and n-type ZnO films codoped by nitrogen and aluminium”, Optical Materials (2007).
【48】H.P. He, Z.Z. Ye, F. Zhuge, Y.J. Zeng, L.P. Zhu, B.H. Zhao, J.Y. Huang, Z. Chen,” Carrier localization in codoped ZnO:N:Al films”, Solid State Communications 138 (2006) 542–545.
【49】Jinzhong Wang, Elangovan Elamurugu, Vincent Sallet, Franc¸ois Jomard, Alain Lusson, Ana M. Botelho do Rego, Pedro Barquinha, Gonc¸alo Gonc¸alves, Rodrigo Martins, Elvira Fortunato, “Effect of annealing on the properties of N-doped ZnO films deposited by RF magnetron sputtering”, Applied Surface Science 254 (2008) 7178–7182.
【50】N. Tabet, M. Faiz, A. Al-Oteibi, ”XPS Study of Nitrogen–implanted ZnO Thin Films obtained by DC-Magnetron Reactive Plasma”, Journal of Electron Spectroscopy and Related Phenomena (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊