跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 18:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏豪助
研究生(外文):Hao-Zhou Wei
論文名稱:奈米級薄膜成長特性研究
論文名稱(外文):Growth Characteristics of Nanoscale Thin Films
指導教授:方得華方得華引用關係
指導教授(外文):Te-Hua Fang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:57
中文關鍵詞:分子動力原子力顯微鏡物理沉積表面粗糙
外文關鍵詞:Molecule dynamicsAtomic force microscopePhysics depositionRoughness.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本文主要是研究物理沉積製程中,沉積後對薄膜量測其表面形貎及表面粗糙度的影響。在實驗方面我們以鋁為材料,針對物理沉積的各個參數:例如基板的溫度,鍍膜的時間,製程的功率,來做為各個參數的基準值來探討。再搭配模擬來呈現因不同的參數所造成不相同的狀態及對表面形貎及粗糙度所造成的影響。研究發現,在我們所運用的這些條件下,所得到沉積後的表面狀態,量測所測得數據分析出的粗糙度數值與文獻上的資料相當,這證實了本文在物理沉積實驗及薄膜表面的量測數值有相當的正確性。以製程上對於參數跟粗糙度二者的共同性,發現溫度是所有參數中佔有很重要的因素,在溫度與表面粗糙度中一直保持著同向的變化,致於其它參數的影響,發現有所出入,主要是參數在實驗中,加於其設定的不同,參數跟參數之間互相影響的結果。
Abstract
This study is mainly about the physical vapor deposition (PVD) in the system regulation. After depositing, we want to know the influence of its face shape to the thin film and the surface roughness. In the experimental aspect, we take the aluminum as the material to view of each parameter of physical deposition, for example; the temperature of substrate, the sputter time and the power of regulation process, could be the datum value of each parameter. We match molecular dynamics to present that the different parameters could cause the different condition and the influence to its face shape and the surface roughness. Under these conditions, we discover that the situation of surface after depositing, the roughness value is almost the same with the previous scientific literature. It confirmed that the tests of the physical deposition have the suitable accuracy with the thin film surface. By the system regulation in regarding the common traits between the parameter and roughness, the temperature holds the very important factor in all parameters. It has been maintaining the concurrent change between the temperature and the surface roughness. As for other parameter influence, it has the discrepancy, which is because the parameter in the experiment adds in its hypothesis difference and parameter themselves could influence with each other.
目 錄
摘要......................................................i
Abstract …………………………………………………..…………ii
誌謝 ...................................................iii
目錄 ....................................................iv
表目錄 .................................................vii
圖目錄 ................................................viii
符號表 ..................................................ix
第一章 緒論 ...........................................1
1-1 光學薄膜的演化..................................1
1-2 文獻回顧 .......................................1
1-3 研究動機與目的..................................3
1-4 本文架構........................................4

第二章 理論基礎........................................5
2-1 分子動力學基本理論...................................5
2-2 分子間作用力與勢能函數...............................6
2-2-1 二體勢能函數...................................8
2-2-2 多體勢能函數...................................9
2-3 原子級應力... ......................................11

第三章 數值模擬方法......................................12
3-1 物理模型............................................12
3-2 勢能函數選擇........................................12
3-3 最小映像法則........................................14
3-4 設定初始位置........................................15
3-5 溫度修正法.........................................16
3-6 無因次化...........................................17
3-7 運動方程式.........................................19
Gear五階預測修正法.…………...….........................19
Verlet法…….............................................21
3-8 截斷半徑法.........................................22
3-9 Verlet表列法…….……..............................23
3-10 模擬基板模型….....................................26
入射原子設定…...........................................26
第四章 實驗方法及步驟..................................28
4-1 實驗目的............................................28
4-2 薄膜製備............................................28
4-3 濺鍍原理............................................29
4-4 薄膜測厚儀..........................................29
4-5 原子力顯微鏡........................................30

第五章 模擬與實驗相互驗證..............................32
5-1 模擬成長過程........................................32
5-2 基板溫度與鋁薄膜產生的關係..........................33
5-3 入射角度與鋁薄膜關係................................38
5-4 表面粗糙度分析......................................42
5-5 理論與實驗之綜合比較................................43

第六章 結論與建議.......................................47
6-1 結論................................................47
6-2 建議與未來展望......................................47

文獻參考.......................................................48
英文論文大綱.............................................53
簡歷
參考文獻
[1]P. A. M. Diirac, "The Principles of Quantum Mechanics", Oxford, (1958).
[2]吳明璋,薄膜製程之表面特性研究,國立成功大學機械研究所,碩士論文.(1999).
[3]M. Jimbo, T. Kariya, R. Imada, Y. Fujiwara, S. Tsunashima, Journal of Magnetism and Magnetic Materials, 165, 304 (1997).
[4]李正中,"光學薄膜的功能" ,光學工程第11卷,P.8-11,(1984).
[5]B. V. Derjaguin, V. M. Muller, Y. P. Toporov, Journal of Colloid and Interface Science, 53, 314 (1975).
[6]J. M. Haile, "Molecular Dynamics Simulation Elementary Method", Wiley New York (1992).
[7]J. F. Lutsko, Journal of Applied Physics, 64, 1152-1154, (1988).
[8]J. H. Irving, J. G. Kirkwood, Journal of Chemical Physics, 18, 817 (1950).
[9]鄭雅云,"以分子動力學模擬鋁薄膜成長",國立中央大學光電科學研究所,碩士論文,29(2004)
[10]B. Alder, T. Wainwright, Journal of Chemical Physics, 31, 459 (1959).
[11]B. J. Alder, T. E. Wainwright, Physical Review A, 1, 18 (1970).
[12]J. W. Evens, D. E. Sanders ,and P. A. Thiel , Phys. Rev. B41(8),5410-5413 (1990).
[13]G. Ciccotti, W.G. Hoover, "Molecular Dynamics Simulation of Statistical Mechanics System", Amsterdam, North Holland (1986).
[14]M. P. Allen, D. J. Tildesley, "Compuetr Simulation of Liquids", Oxford, Claredon (1987).
[15]L. Verlet, Physical Review, 159, 98 (1967).
[16]B. Quentrec, C. Brot, Journal of Computational Physics, 13, 430 (1975).
[17]C. D. Rapaport, Computational Physics Review, 19, 1 (1988).
[18]G. S. Grest, B. Dunweg, K. Kremer, Computer Physics Communications, 55, 269 (1989).
[19]蘇哲暐,"以分子動力學模擬薄膜之沉積",國立中央大學光電科學研究所,碩士論文 (2003) .
[20]Y. T. Cheng, C. M. Cheng, Journal of Applied Physics, 84, 3, 1284 (1998).
[21]T. H. Fang, C. I. Weng, Nanotechnology, 11, 148 (2000).
[22]H. R. Tabar, Physcis Reports, 352, 239 (2000).
[23]F. N. Dezgilenko, D. Srivastava, S. Saini, Nanotechnology, 11, 173 (2000).
[24]W. C. D. Cheong, L. C. Zhang, Nanotechnology, 11, 173 (2000).
[25]J. B. Adams, L. G. H. Jr, D. J. Siegel, H. Yu, J. Zhong, Surface and Interface Analysis, 31, 619 (2001).
[26]R. Saha, W. D. Nix, Materials Science and Engineering A, 319, 898, (2001).
[27]R. Saha, W.D. Nix, Acta Materialia, 50, 23 (2002).
[28]Z. H. Xu, D. Rowcliffe, Surface and Coatings Technology, 161, 44 (2002).
[29]Y. Y. Ye, R. Biswas, J. R. Morris, A. Bastawros, A. Chandra,
Nanotechnology, 14, 390 (2003).
[30]T.H. Fang, W.J. Chang, C.M. Lin, Microelectronic Engineering, 77, 389
(2005).
[31]W. H. Briscoe, S. Titmuss, F. Tiberg, Nature, 444, 191 (2006).
[32]P. Kizler, S. Schmauder, Computational Material Scienec, 39, 205 (2007).
[33]D. Cheng, Z. J. Yan, L. Yan, Thin Solid Films, 515, 3698 (2007).
[34]T. H. Fang, C. D. Wu, W. J. Chang, Applied Surface Science, 253,6963 (2007).
[35]Z. Kato, M. Sakairi, H. Takahashi, Surface and Coatings Technology, 169, 195 (2003).
[36]H. D. Fonseca Filho, M. H. P. Mauricio, C. R. Ponciano, R. Prioli, Materials Science and Enginnering B, 112,194 (2004).
[37]L. Santinacci, Y. Zhang, P. Schmuki, Surface Science, 597, 11 (2005).
[38]G. E. Fantner, G. Schitter, J. H. Kindt, T. Ivanov, K. Ivanova, R. Patel, N. H.Andersen, J. Adams, P. J. Thurner, I.W. Rangelow, P.K. Hansma, Ultramicroscope ,106, 881 (2007).
[39]Y. Yan, T. Sun, Y. Liang, S. Dong, Internation Journal of Machine Tools and Maunfacture, 47, 1651 (2007).
[40]Y. Yan, T. Sun, S. Dong, Tribology Letters, 28,157 (2007).
[41]J. G. Park, C. Zhang, R. Liang, B. Wang, Nanotechnology, 185, 405306 (2007).
[42]H.L. Yu, J. B. Adams, L. G. Hector Jr, Modelling and Simulation in Materials Science and Engineering, 10, 319 (2002).
[43]Y. S. Kim, K.H. Na, S.O. Choi, S. H. Yang, Journal of Materials Processing Technology ,155, 1847 (2004).
[44]S. Jun, Y. Lee, S. Y. Kim, S. Im, Nanotechnology, 15, 1169 (2004).
[45]C. K. Chen, B. H. Chen, Y. T. Yang, Nanotechnology, 15, 1771 (2004).
[46]M. H. Cho, S. J. Kim, D. S. Lim, H. Jang, Wear, 259, 1392 (2005).
[47]Y. Yan, T. Sun, S. Dong Y.C. Liang, Computational Material Scienec, 40, 1 (2007).
[48]R. J. Arsenault, J. R. Beeler, "Computer Simulation in Materials", Asm international ,USA (1988).
[49]R. Smith, M. Jakas ,Cambridge University Press ,USA (1997).
[50]S. Erkoc, "Annual Reviews of computional IX" ,World Scientific Publishing Company Singapore, 1 (2001).
[51]J. E. Lennard-Jones, Proceedings of the Royal Society of London A, 106, 441 (1924).
[52]L. A. Girifalco, V. G. Weizer, Physical Review, 3, 114, (1959).
[53]V. Rosato, M. Guillope, B. Legrand, Philosophical Maganize A, 2, 321 (1988).
[54]R. A. John, Physical Review B, 37, 3924 (1987).
[55]S. M. Foiles, M. I. Baskes, M. S. Daw, Physical Review B, 12, 7983 (1986).
[56]M. S. Daw, S. M. Faoiles, M. I. Baskes, Material Science Report, 9, 251 (1993).
[57]M. I. Baskes, J. S. Nelson, A. F. Wright, Journal of Physics B, 9, 6085 (1989).
[58]M. I. Baskes, Journal of Physics B, 46, 2727 (1992).
[59]J. F. Lutsko, Journal of Applied Physics, 64, 3, 1152 (1988).
[60]G. M. Pharr, W. C. Oliver, F. R. Brotzen, Journal of Material Research, 7, 613 (1992).
[61]J. B. Pethica, R. Hutchings, W. C. Oliver, Philosophical Magazine A, 48, 593 (1983).
[62]G. M. Pharr, W. C. Oliver, F. R. Brotzen, Journal of Materials Research, 7, 613 (1992).
[63]I. N. Sneddon, International Journal of Engineering Science, 3, 47 (1965).
[64]R. B. King, International Journal of Solids and Structures, 23, 1657 (1987).
[65]A. C. Fischer-Cripps, Journal of Material Research, 16, 7, 2149 (2001).
[66]A. C. Fischer-Cripps, Springer-Verlag, New York (2002).
[67]D. C. Rapaport, "The Art of Molecular Dynamics Simulation", Cambridge University Press, London (1997).
[68]D. Frenkel, B. Smit, "Understanding Molecular Simulation" , Academic Press, San Diego (1996).
[69]H. S. Park, J. A. Zimmerman, Scripta Materialia, 54, 1127 (2006).
[70]K. L. Johnson, K. Kendall, A. D. Roberts, Proceedings of the Royal Society of London A, 324,301 (1971).
[71]C. M. Gilmore, Thin Solid Films, 419,18(2002)
[72]邱俊偉,"奈米超微粒之熱穩定機制與聚合吸附特性研究",南台科技大學機械工程系,碩士論文 ( 2003) .
[73]蔡松霖,"掃描探針顯微術與分子動力學應用於奈米加工與奈米壓印特性研究",南台科技大學機械工程系,碩士論文 ( 2004) .
[74]廖世正,"奈米微影理論與實驗研究",南台科技大學機械工程系,碩士論文 ( 2004) .
[75]吳冠德,"奈米電化學與自聚單分子浸筆微影術研究",南台科技大學機械工程系,碩士論文 ( 2005) .
[76]張峻嘉,"多層薄膜之分子模擬及實驗研究",南台科技大學機械工程系,碩士論文 ( 2005) .
[77]陳冠仁,"場發射顯示器矽發射源之製程與特性研究",南台科技大學機械工程系,碩士論文 ( 2006) .
[78]王健全,"光電半導體晶片之高速取放頭振動分析",國立虎尾科技大學光電與材料科技研究所,碩士論文 ( 2007) .
[79]陳文立,"分子動力學研究含缺陷金奈米線變形與應力分析",國立虎尾科技大學機械與機電工程研究所,碩士論文 ( 2007) .
[80]吳佳鴻,"原子級模擬與實驗研究多層奈米薄膜之力學特性分析",國立虎尾科技大學機械與機電工程研究所,碩士論文 ( 2007) .
[81]柯正良,"結合類神經網路與有限元素法應用於奈米壓痕試驗分析",國立虎尾科技大學機械與機電工程研究所,碩士論文 ( 2007) .
[82]廖佳鴻,"分子動力學模擬原子轟擊與離子佈值之物理機制研究",國立虎尾科技大學機械與機電工程研究所,碩士論文 ( 2007) .
[83]洪正翰,"分子動力學與原子級應力計算及薄膜沉積處理之應用",雲林科技大學工程科技研究所博士班,博士論文 ( 2008) .
[84]方俊男,"自組裝分子膜之力學特性分析與實驗研究",國立虎尾科技大學機械與機電工程研究所,碩士論文 ( 2008) .
[85]李俊慶,"磊晶成長氧化鋅奈米結構應用於壓電式奈米發電機系統",國立虎尾科技大學機械與機電工程研究所,碩士論文 ( 2008) .
[86]黃建今,"薄膜動態奈米壓痕之分子力學分析與實驗研究",國立虎尾科技大學機械與機電工程研究所,碩士論文 ( 2008) .
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top