跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/23 23:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林振勤
研究生(外文):Zhen-Chin Lin
論文名稱:以臨界角法結CCD影像擷取技術作表面形貌量測之研究
論文名稱(外文):Study on the Surface Profile Measurement by Uses of the Critical Angle Method and a CCD Camera.
指導教授:邱銘宏邱銘宏引用關係
指導教授(外文):Ming-Hung Chiu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:臨界角CCD表面形貌
外文關鍵詞:Critical Anglea CCD CameraSurface Profile
相關次數:
  • 被引用被引用:4
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出以臨界角強度法結合CCD影像擷取技術來量測透明待測物之表面輪廓。當一個擴束光經過透明待測物時,由於待測物的表面高度變化,造成穿透光有些微角度偏移,以致於入射至平行四邊形稜鏡時,偏離了原先靠近臨界角的角度,造成靈敏的光強度增減,再以CCD擷取光強影像。由於待測物的表面高度變化與穿透光的強度比反射率成正比,故可利用反射率變化來描繪待測物的表面形貌與輪廓。
本法最大優點為不需掃描待測物,即可獲得大範圍的待測物表面形貌。另外,本法也具有架構簡單、組裝容易、高靈敏度、高解析度等優點。
In this paper, we proposed a new method based on the critical angle method and the use of a CCD camera for surface profile measurement of a transparent component, a broaden beam was normally incident at a transparent test component, and the output beam was incident into a critical angle prism for angular detecting. If there are some points with some different heights on the surface, the light passing through these point will deviated a small angle in the output, then these light incident into a prism at a specific incident angle will be changed its intensity apparently because of the steep reflection varied near at the critical angle, the surface height is proportional to the deviation angle and the intensity of light.
So, we could use this principle to measure the surface profile or the surface roughness. Using a CCD camera to catch and analyze the image is easier for us.
The method has some merits, such as easy operation, large-range measurement, real-time detection, and high resolution.
誌謝.....................................................iii
目錄.....................................................iv
表目錄..................................................viii
圖目錄....................................................ix
符號說明.................................................xii
第一章 序論......................................... ....1
1.1 前言......................................... ....1
1.2 文獻回顧.........................................2
1.3 論文架構.........................................9
第二章 臨界角反射率與待測物角度偏向原理................11
2.1 光斜向入射不同介質界面電磁分析..................11
2.1.1 電場振動方向垂直於入射面(S偏光).................12
2.1.2 電場振動方向平行於入射面(P偏光).................15
2.2 臨界法全反射原理及反射率對角度變化比較..........17
2.2.1 全反射原理......................................17
2.2.2 一次與兩次反射之反射率對內角變化之靈敏度比較....18
2.2.3 兩次P偏光反射之反射率與外角變化關係.............23
2.3 透明待測物理論推導..............................25
2.3.1 透明待測物之光線偏向推導........................25
2.3.2 透明待測物偏向角度與表面高度差關係..............26
2.3.3 透明待測物表面輪廓與反射率變化關係..............28
第三章 系統元件原理....................................30
3.1 光阻隔器(Isolator)原理..........................30
3.2 擴束器(Beam Expander)原理.......................33
3.3 成像原理........................................34
3.4 CCD原理.........................................35
第四章 實驗與結果......................................36
4.1 實驗架構與原理..................................36
4.1.1 光學元件及儀器簡介..............................37
4.1.2 實驗原理........................................39
4.2 以分區斜率計算光柵表面輪廓......................41
4.2.1 20 lines/mm之光柵...............................41
4.2.1.1 20 lines/mm之光柵3D計算結果.....................41
4.2.1.2 20 lines/mm之光柵第120、240、360列表面輪廓比較..48
4.2.2 1000 lines/inch之光柵...........................49
4.2.2.1 1000 lines/inch之光柵3D計算結果.................49
4.2.2.2 1000 lines/inch之光柵第120、240、360列表面輪廓比較.......................................................56
4.3 以總平均斜率計算光柵表面輪廓....................57
4.3.1 20 lines/mm之光柵...............................57
4.3.1.1 20 lines/mm之光柵3D計算結果.....................57
4.3.1.2 20 lines/mm 之光柵第120、240、360列表面輪廓之比較.......................................................63
4.3.2 1000 lines/inch之光柵...........................64
4.3.2.1 1000lines/inch之光柵3D計算結果..................64
4.3.2.2 1000 lines/mm之光柵第120、240、360列總平均斜率表面輪廓比較.................................................70
4.4 計算結果與商用測膜機Dektak 600量測結果綜合比較..71
4.4.1 20 lines/mm之光柵...............................71
4.4.2 1000 lines/inch之光柵...........................73
4.5 系統分析........................................75
4.5.1 系統靈敏度......................................75
4.5.2 系統解析度......................................75
4.5.2.1 縱向解析度......................................75
4.5.2.2 橫向解析度......................................76
4.5.3 橫向放大倍率探討................................76
4.5.3.1 20 lines/mm之光柵...............................76
4.5.3.2 1000 lines/inch之光柵...........................77
4.5.4 待測物的選擇....................................78
4.5.5 誤差來源分析....................................78
4.5.5.1 雷射光部分......................................78
4.5.5.2 系統擺設部分....................................79
4.5.5.3 稜鏡平行度部分..................................82
4.5.5.4 環境部分........................................82
第五章 結論............................................83
參考文獻.................................................85
英文論文大綱.............................................88
簡歷.....................................................93
1.J. M. Bennett and J. H. Dancy, “Stylus profiling instrument for measuring statistical properties of smooth optical surface”, Applied Optics, 20, 1785-1802, 1981.
2.J. Garratt and M. Mills, “Measurement of the roughness of supersmooth surfaces using a stylus instrument”, Nanotechnology, 7, 13-20, 1996.
3.I. J. Hodgkinson, “A method for mapping and determining the surface defects function of pairs coated optical flats”, Applied Optics, 8, 1373-1378, 1969.
4.Robert A. Sprague, “Surface roughness measurement using white light speckle”, Applied Optics, 11, 2811-2816, 1972.
5.D. Pantzer, J. Politch, and L. Ek, “Heterodyne profiling instrument for the angstrom region”, Applied Optics, 25, 4168-4172, 1986.
6.F. Laeri and T. C. Strand, “Angstrom resolution optical profilometry for microscopic objects”, Applied Optics, 25, 2245-2249, 1987.
7.K. Creath, “Absolute measurement of surface roughness”, Applied Optics, 29, 3823-3827, 1990.
8.Takayuki Okamoto and Ichirou Yamaguchi, “Real-time enhancement of defects in periodic patterns by use of a bacteriorhodopsin film”, Optics Letters, 22, 337-339, 1997.
9.Chien Chou, Jenn-chyang Shyu, Yeu-chuen Huang, and Chen-kee Yuan, “Common-path optical heterodyne profilometer: a configuration”, Applied Optics, 37, 4137-4142, 1998.
10.Shizhuo Yin, Jiang Li, Minho Song, “Surface profile measurement using a unique microtube-based system”, Optics Communications, 168, 1–6, 1999.
11.Luis Miguel Sanchez-Brea, Philip Siegmann, Maria Aurora Rebollo, and Eusebio Bernabeu, “Optical technique for the automatic detection and measurement of surface defects on thin metallic wires”, Applied Optics, 39, 539-545, 2000.
12.Eric J. Klein, W. Fred Ramirez and John L. Hall, “A common-path heterodyne interferometer for surface profiling in microelectronic fabrication”, Review of scientific Instruments, 72, 2455-2466, 2001.
13.Hongzhi Zhao, Rong Liang, Dacheng Li, Mang Cao, “Practical common-path heterodyne surface profiling interferometer with automatic focusing”, Optics & Laser Technology, 33, 259–265, 2001.
14.Shihua Wang, Yunhui Tian, Cho Jui Tay, and Chenggen Quan, “Development of a laser-scattering-based probe for on-line measurement of surface roughness”, Applied Optics, 42, 1318-1324, 2003.
15.Byoung-Chang Kim and Seung-Woo Kim, “Absolute interferometer for three-dimensional profile measurement of rough surfaces”, Optics Letters, 28, 528 – 530, 2003.
16.C.J. Tay, S.H. Wang, C. Quan, B.L. Ng, K.C. Chan, “Surface roughness investigation of semi-conductor wafers”, Optics & Laser Technology, 36, 535-539, 2004.
17.A.M. Hamed, H. El-Ghandoor, F. El-Diasty, and M. Saudy, “Analysis of speckle images to assess surface roughness”, Optics & Laser Technology, 36, 249-253, 2004.
18.Shihua Wang, Chenggen Quan, Cho Jui Tay, Ivan Reading, and Zhongping Fang, “Measurement of a fiber-end surface profile by use of phase-shifting laser interferometry”, Applied Optics, 43, 49-56, 2004.
19.Madhuri Thakur, Cho Jui Tay, and Chenggen Quan, “Surface profiling of a transparent object by use of phase-shifting Talbot interferometry”, Applied Optics, 44, 2541-2545, 2005.
20.Jeong Seok Oh and Seung-Woo Kim, “Femtosecond laser pulses for surface-profile metrology”, Optics Letters, 30, 2650-2652, 2005.
21.Oleg V. Angelsky, Alexander P. Maksimyak, Peter P. Maksimyak, and Steen G. Hanson, “Optical correlation diagnostics of rough surfaces with large surface inhomogeneities”, Optics Express, 14, 7299-7311, 2006.
22.N.R. Sivakumar, B. Tan, K. Venkatakrishnan, “Measurement of surface profile in vibrating environment with instantaneous phase shifting interferometry”, Optics Communications, 257, 217–224, 2006.
23.Dalip Singh Mehta, Satish Kumar Dubey, Chandra Shakher, and Mitsuo Takeda, “Two-wavelength Talbot effect and its application for three-dimensional step-height measurement”, Applied Optics, 45, 7602-7609, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top