跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡富鈞
研究生(外文):Fu-Chun Tsai
論文名稱:鈦/鋁金屬與氧化鋅-氧化銦錫共濺鍍薄膜歐姆接觸及其應用於蕭特基二極體之研究
論文名稱(外文):Ti/Al ohmic contacts to ZnO-ITO cosputtered films and its applications to Schottky diodes
指導教授:劉代山
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:96
中文關鍵詞:射頻磁控共濺鍍氧化鋅歐姆接觸蕭特基接觸
外文關鍵詞:Rf magnetron cosputteringzinc oxideohmic contactSchottky contact
相關次數:
  • 被引用被引用:2
  • 點閱點閱:573
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究於室溫下利用射頻磁控式共濺鍍系統,選擇氧化鋅與氧化銦錫為共濺鍍靶材,在藍寶石基板上沉積共濺鍍薄膜(Zn/(Zn+In) = 80 at.%),並利用熱處理製程製作具有電子濃度為1017 ~ 1018 cm−3之氧化鋅-氧化銦錫薄膜,在薄膜上分別沉積鋁以及鋁/鈦歐姆接觸電極,藉由半導體參數分析儀、X光繞射分析儀、歐傑電子能譜儀之縱深分佈以及X光光電子能譜儀量測熱退火前後歐姆接觸特性變化及機制。結果顯示由於鈦原子較鋁原子更容易與界面氧原子產生鍵結,使共濺鍍薄膜表面產生較多的氧空位缺陷,進而造成薄膜表面電子濃度提升,因此利用鈦/鋁金屬在共濺鍍薄膜上製作歐姆接觸,在熱退火前具有優異的接觸電阻率8.78 × 10−4 Ωcm2,在氮氣環境於不同溫度熱退火處理後,當退火溫度為200oC時具有最低接觸電阻率8.30 × 10−6 Ωcm2,這是由於更多氧化鋅-氧化銦錫薄膜表面之氧原子外擴散並與鈦原子產生鈦-氧(Ti-O)鍵結,而提高氧化鋅-氧化銦錫薄膜表面之電子濃度,進而大幅降低了鈦/鋁金屬與共濺鍍薄膜之歐姆接觸電阻率;而當熱退火溫度達到400oC時,由於鈦原子與鋁原子形成鈦鋁合金(Ti3Al),造成劣化了鈦/鋁金屬與共濺鍍薄膜之歐姆接觸電阻率特性。接著,再利用鈦/鋁金屬對氧化鋅-氧化銦錫共濺鍍薄膜作歐姆接觸以及鎳/金金屬對未摻雜氧化鋅薄膜對作蕭特基接觸,於藍寶石基板上製作氧化鋅蕭特基二極體,研究中可以發現,在氧化鋅薄膜表面未進行處理之蕭特基元件,其元件在外加2伏特之逆向偏壓下的漏電流為7.21 × 10−4 A、蕭特基位障為0.55 eV、理想因子為2.12;而對氧化鋅表面進行氧電漿以及雙氧水表面處理後,其蕭特基元件之漏電流分別降至3.26 × 10−8 A及1.42 × 10−10 A,且蕭特基位障提升至0.82 eV及0.89 eV,理想因子則分別為1.22及1.13;因此,藉由氧電漿以及雙氧水表面處理後,將可有效降低薄膜的表面態位密度,大幅提升蕭特基二極體的整流特性。
In this study, the ZnO-ITO films were grown by rf magnetron cosputtering deposition on sapphire substrate, using 2 in. diameter targets of ITO (purity 99.99% with In2O3 : SnO2 = 90 : 10 wt %) and ZnO (purity 99.99%). The cosputtered film at an atomic ratio of 80% [Zn / (Zn + In) at.%] was annealed under oxygen ambient and possessed an electron carrier concentration of 1017 ~ 1018 cm−3. Prior to lithography, the annealed ZnO-ITO films were ultrasonically degreased in acetone, methanol, and rinsed in deionized water for 5 min in each step. A standard photolithography technique was used to pattern transmission line method (TLM). Ti/Al and Al metal electrode were then deposited on the cosputtered films by electron beam evaporation. Using Current–voltage (I–V), glancing angle X-ray diffraction (GXRD), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) depth profiles analysis, a better understanding of the mechanism involved in a Ti/Al ohmic contact has been developed. It is shown that the as-deposited Ti/Al contacts produce a specific contact resistivity of 8.78×10−4 Ωcm2. The accumulation of oxygen vacancies (Vo) at the region near the surface of the ZnO-ITO films was found and the Ti-O bonds were formed more than the Al-O bonds. It is also noted that the carrier concentration of the Ti/Al metallization scheme is higher than the Al metallization scheme. However, annealed Ti/Al contacts exhibit linear current–voltage characteristics, indicating that high-quality ohmic contacts are formed. The Ti/Al scheme produces a lowest specific contact resistance of 8.30×10−6 Ωcm2 when annealed at 200oC for 60 sec under nitrogen ambient. The relative intensity of the Ti-O phases remained virtually unchanged with increasing temperature. For the 400oC sample, new phases, such as Ti3Al, were found to occur. The Ti3Al phases would lead to a high specific contact resistivity. Then, ohmic contacts to cosputtered films using Ti/Al metallization scheme, and its applications to Ni/Au Schottky diodes. It is shown that the Ni/Au contact to conventionally cleaned undoped ZnO surface showed 7.21 × 10−4 A leakage current to −2 V, a barrier height of 0.55 eV, and an ideality factor of 2.12. However, the contact produces a Schottky behavior, when the undoped ZnO surface is treated in oxygen plasma-treated. The Ni/Au contact to oxygen plasma-treated undoped ZnO surface showed 3.26 × 10−8 A leakage current to −2 V, a barrier height of 0.82 eV, and an ideality factor of 1.22. And the contact produces a Schottky behavior, when the undoped ZnO surface is treated in a boiling hydrogen peroxide solution at 100oC for 1 min. The Ni/Au contact to hydrogen peroxide-treated undoped ZnO surface showed 1.42 × 10−10 A leakage current to −2 V, a barrier height of 0.89 eV, and an ideality factor of 1.13. The reversed leakage current as well as the ideality factor of the conventional Schottky diodes were effectively reduced with oxygen plasma treatment and hydrogen peroxide treatment on the Schottky contact surface, respectively. Thus, elimination of the surface contaminations and the compensation of the oxygen-related vacancies were the mechanism to reduce the electron tunneling effect and led to the better Schottky diodes performance.
摘要 …………………………………………………………………… i
Abstract ……………………………………………………………… ii
誌謝 …………………………………………………………………… iv
目錄 …………………………………………………………………… v
表目錄 ………………………………………………………………… vii
圖目錄 ………………………………………………………………… viii
第一章 緒論…………………………………………………………… 1
1.1 前言………………………………………………………………… 1
1.2 研究動機與目的…………………………………………………… 2
1.3 文獻回顧…………………………………………………………… 3
第二章 ………………………………………………………………… 7
2.1 電漿理論…………………………………………………………… 7
2.2 射頻磁控濺鍍原理………………………………………………… 8
2.3 薄膜成核理論……………………………………………………… 9
2.4 薄膜材料特性簡介………………………………………………… 9
2.4.1 氧化鋅薄膜……………………………………………………… 9
2.4.1 氧化銦錫薄膜………………………………………………… 10
2.5 金屬與半導體接觸理論………………………………………… 11
2.5.1 歐姆接觸理論………………………………………………… 11
2.5.2 蕭特基接觸理論……………………………………………… 12
2.5.3 傳輸線模型…………………………………………………… 14
第三章 實驗製程方法與步驟………………………………………… 24
3.1 實驗系統說明…………………………………………………… 24
3.2 氧化鋅-氧化銦錫共濺鍍薄膜濺鍍流程………………………… 25
3.3 傳輸線模型製作流程…………………………………………… 26
3.4 蕭特基二極體製作流程………………………………………… 28
3.5 實驗儀器量測原理……………………………………………… 30
3.5.1 表面輪廓分析儀……………………………………………… 30
3.5.2 霍爾量測系統………………………………………………… 31
3.5.3 X光繞射分析儀………………………………………………… 31
3.5.4 半導體參數分析儀…………………………………………… 31
3.5.5 歐傑電子能譜儀……………………………………………… 32
3.5.6 X光光電子能譜儀……………………………………………… 32
第四章 結果與討論…………………………………………………… 45
4.1 金屬與共濺鍍薄膜歐姆接觸特性分析………………………… 45
4.1.1 氧化鋅-氧化銦錫共濺鍍薄膜特性分析……………………… 45
4.1.2 金屬與共濺鍍薄膜接觸之電流-電壓特性分析……………… 46
4.1.3 金屬與共濺鍍薄膜接觸之X光繞射分析……………………… 47
4.1.4 金屬與共濺鍍薄膜界面之歐傑電子能譜儀縱深分析……… 48
4.1.5 金屬與共濺鍍薄膜界面之X光光電子能譜分析……………… 49
4.1.6 金屬與共濺鍍薄膜接觸之表面型態分析…………………… 51
4.2 蕭特基二極體特性分析………………………………………… 52
4.2.1 蕭特基接觸層之未摻雜氧化鋅薄膜特性分析……………… 52
4.2.2 不同歐姆接觸結構對蕭特基二極體之電流-電壓特性分析… 53
4.2.3 同質緩衝層對蕭特基二極體之電流-電壓特性分析………… 56
4.2.4 不同表面處理對蕭特基二極體之電流-電壓特性分析……… 56
第五章 結論與未來工作……………………………………………… 83
參考文獻 ……………………………………………………………… 85
附錄 Extended Abstract…………………………………………… 93
簡歷…………………………………………………………………… 96
【1】D. C. Look, “Recent advances in ZnO materials and devices”, Mater. Sci. Eng., A, Vol. 80, pp. 383-387 (2001).
【2】K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors—A status review”, Thin Solid Films, Vol. 102, pp. 1-46 (1983).
【3】L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng, “Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays”, Appl. Phys. Lett., Vol. 94, p. 203106 (2009).
【4】D. S. Liu, C. Y. Wu, C. S. Sheu, F. C. Tsai, and C. H. Li, “The Preparation of Piezoelectric ZnO Films by RF Magnetron Sputtering for Layered Surface Acoustic Wave Device Applications”, Jpn. J. Appl. Phys., Vol. 45, No. 4B, pp. 3531-3536 (2006).
【5】C.-Y. Liu, C.-F. Chen, and J.-P. Leu, “Fabrication and CO Sensing Properties of Mesostructured ZnO Gas Sensors”, J. Electrochem. Soc., Vol. 156 (1), pp. J16-J19 (2009).
【6】X. Y. Zhang, A. Dhawan, P. Wellenius, A. Suresh, and J. F. Muth, “Planar ZnO ultraviolet modulator”, Appl. Phys. Lett., Vol. 91, p. 071107 (2007).
【7】M. Saito, and S. Fujihara, “Large photocurrent generation in dye-sensitized ZnO solar cells”, Energy Environ. Sci., Vol. 1, pp. 280-283 (2008).
【8】A. Tsukazaki, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO”, Nat. Mater., Vol. 4, pp. 42-46 (2005).
【9】E. S. P. Leong, S. F. Yu, and S. P. Lau, “Directional edge-emitting UV random laser diodes”, Appl. Phys. Lett., Vol. 89, p. 221109 (2006).
【10】S. J. Young, L.-W. Ji, S. J. Chang, Y. P. Chen, and S.-M. Peng, “ZnO Schottky diodes with iridium contact electrodes”, Semicond. Sci. Technol., Vol. 23, p. 085016 (2008).
【11】V. A. Karpina, V. I. Lazorenko, C. V. Lashkarev, V. D. Dobrowolski, L. I. Kopylova, V. A. Baturin, S. A. Pustovoytov, A. Ju. Karpenko, S. A. Eremin, P. M. Lytvyn, V. P. Ovsyannikov, and E. A. Mazurenko, “Zinc oxide – analogue of GaN with new perspective possibilities”, Cryst. Res. Technol., Vol. 39, No. 11, pp. 980-992 (2004).
【12】D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature”, Appl. Phys. Lett., Vol. 70, No.17, pp. 2230-2232 (1997).
【13】H. S. Kim, S. J. Pearton, D. P. Norton, and F. Ren, “Pulsed laser deposition of high-quality ZnO films using a high temperature deposited ZnO buffer layer”, Appl. Phys. A, Vol. 91, pp. 255-259 (2008).
【14】H.-K. Kim, T.-Y. Seong, K.-K. Kim, S.-J. Park, Y. S. Yoon, and I. Adesida, “Mechanism of Nonalloyed Al Ohmic Contacts to n-Type ZnO:Al Epitaxial Layer”, Jpn. J. Appl. Phys., Vol. 43, No. 3, pp. 976-979 (2004).
【15】H.-K. Kim, K.-K. Kim, S.-J. Park, T.-Y. Seong, and I. Adesida, “Formation of low resistance nonalloyed Al/Pt ohmic contacts on n-type ZnO epitaxial layer”, Jpn. J. Appl. Phys., Vol. 94, No. 6, pp. 4225-4227 (2003).
【16】H.-K. Kim, and J.-M. Lee, “Low resistance nonalloyed Al-based ohmic contacts on n-ZnO:Al”, Superlattices Microstruct., Vol. 42, pp. 255-258 (2007).
【17】H.-K. Kim, S.-H. Han, T.-Y. Seong, and W.-K. Choi, “Low-resistance Ti/Au ohmic contacts to Al-doped ZnO layers”, Appl. Phys. Lett., Vol. 77, No. 11, pp. 1647-1649 (2000).
【18】H.-K. Kim, S.-H. Han, T.-Y. Seong, and W.-K. Choi, “Electrical and Structural Properties of Ti/Au Ohmic Contacts to n-ZnO”, J. Electrochem. Soc., Vol. 148 (3), pp. G114-G117 (2001).
【19】S. Y. Kim, H. W. Jang, J. K. Kim, C. M. Jeon, W. I. Park, G.-C. Yi, and J.-L. Lee, “Low-Resistance Ti/Al Ohmic Contact on Undoped ZnO”, J. Electron. Mater., Vol. 31, No. 8, pp. 868-871 (2002).
【20】K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Peartona, and F. Ren, “Carrier concentration dependence of Ti/Al/Pt/Au contact resistance on n-type ZnO”, Appl. Phys. Lett., Vol. 84, No. 4, pp. 544-546 (2004).
【21】H.-K. Kim, K.-K. Kim, S.-J. Park, T.-Y. Seong, and Y. S. Yoon, “Thermally Stable and Low Resistance Ru Ohmic Contacts to n-ZnO”, Jpn. J. Appl. Phys., Vol. 41, pp. L546-L548 (2002).
【22】H. Sheng, N. W. Emanetoglu, S. Muthukumar, B.V. Yakshinskiy, S. Feng, and Y. Lu, “Ta/Au Ohmic Contacts to n-Type ZnO”, J. Electron. Mater., Vol. 32, No. 9, pp. 935-938 (2003).
【23】S.-H. Kim, K.-K. Kim, S.-J. Park, and T.-Y. Seong, “Thermally Stable and Low Resistance Re/Ti/Au Ohmic Contacts to n-ZnO”, J. Electrochem. Soc., Vol. 152 (3), pp. G169-G172 (2005).
【24】E. Gűr, C. Coşkun, and S. Tűzemen, “High energy electron irradiation effects on electrical properties of Au/n-ZnO Schottky diodes”, J. Phys. D: Appl. Phys., Vol. 41, p. 105301 (2008).
【25】B. J. Coppa, R. F. Davis, and R. J. Nemanich, “Gold Schottky contacts on oxygen plasma-treated, n-type ZnO (0001‾)”, Appl. Phys. Lett., Vol. 82, No. 3, pp. 400-402 (2003).
【26】Q. L. Gu, C. C. Ling, X. D. Chen, C. K. Cheng, A. M. C. Ng, C. D. Beling, S. Fung, A. B. Djurišić, L. W. Lu, G. Brauer, and H. C. Ong, “Hydrogen peroxide treatment induced rectifying behavior of Au/n-ZnO contact”, Appl. Phys. Lett., Vol. 90, p. 122101 (2007).
【27】Q. L. Gu, C. K. Cheung, C. C. Ling, A. M. C. Ng, A. B. Djuriši, L. W. Lu, X. D. Chen, S. Fung, C. D. Beling, and H. C. Ong, “Au/n-ZnO rectifying contact fabricated with hydrogen peroxide pretreatment”, J. Appl. Phys., Vol. 103, p. 093706 (2008).
【28】A. Y. Polyakov, N. B. Smirnov, E. A. Kozhukhova, V. I. Vdovin, K. Ip, Y. W. Heo, D. P. Norton, and S. J. Pearton, “Electrical characteristics of Au and Ag Schottky contacts on n-ZnO”, Appl. Phys. Lett., Vol. 83, No. 8, pp. 1575-1577 (2003).
【29】A. Y. Polyakov, N. B. Smirnov, E. A. Kozhukhova, V. I. Vdovin, K. Ip, D. P. Norton, and S. J. Pearton, “Properties of Au and Ag Schottky diodes prepared on undoped n-ZnO”, J. Vac. Sci. Technol. A, Vol. 21 (5), pp. 1603-1608 (2003).
【30】S.-H. Kim, H.-K. Kim, and T.-Y. Seong, “Electrical characteristics of Pt Schottky contacts on sulfide-treated n-type ZnO”, Appl. Phys. Lett., Vol. 86, p. 022101 (2005).
【31】M.-S. Oh, D.-K. Hwang, J.-H. Lim, Y.-S. Choi, and S.-J. Park, “Improvement of Pt Schottky contacts to n-type ZnO by KrF excimer laser irradiation”, Appl. Phys. Lett., Vol. 91, p. 042109 (2007).
【32】J. S. Wright, R. Khanna, L. F. Voss, L. Stafford, B. P. Gila, D. P. Norton, S. J. Pearton, H.-T. Wang, S. Jang, T. Anderson, J. J. Chen, B. S. Kang, F. Ren, H. Shen, J. R. LaRoche, and K. Ip, “Effect of cryogenic temperature deposition on Au contacts to bulk, single-crystal n-type ZnO”, Appl. Surf. Sci., Vol. 253, pp. 3766-3772 (2007).
【33】M. W. Allen, and S. M. Durbin, “Influence of oxygen vacancies on Schottky contacts to ZnO”, Appl. Phys. Lett., Vol. 92, p. 122110 (2008).
【34】H. Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice-Hall Inc., 2003.
【35】J. R. Roth, Industrial Plasma Engineering, Volume 1: Principles, Institute of Physics Publishing, 1995.
【36】莊達人,VLSI製造技術,高立圖書股份有限公司,1995年。
【37】D. S. Liu, F. C. Tsai, C. T. Lee, and C. W. Sheu, “Properties of Zinc Oxide Films Cosputtered with Aluminum at Room Temperature”, Jpn. J. Appl. Phys., Vol. 47, No. 4, pp. 3056-3062 (2008).
【38】D. S. Liu, C. C. Wu, and C. T. Lee, “A Transparent and Conductive Film Prepared by RF Magnetron Cosputtering System at Room Temperature”, Jpn. J. Appl. Phys., Vol. 44, No. 7A, pp. 5119-5121 (2005).
【39】T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes”, Semicond. Sci. Technol., Vol. 20, pp. S35-S44 (2005).
【40】D. J. Leary, J. O. Barnes, and A. G. Jordan, “Calculation of carrier concentration in polycrystalline films as a function of surface acceptor state density: application for ZnO gas sensors”, J. Electrochem. Soc., Vol. 29, pp. 1382-1386 (1982).
【41】R. W. G. Wyckoff, Crystal Structures, Interscience Publishers Inc., 1960.
【42】W.-F. Wu, and B.-S. Chiou, “Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing”, Thin Solid Films, Vol. 247, pp. 201-207 (1994).
【43】S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices, 3rd Edition, John Wiley & Sons, Inc., 2006.
【44】陳鼎堯,氧化鎂鋅鋁薄膜應用於氮化鋁鎵接觸之特性研究,國立虎尾科技大學光電與材料科技研究所碩士論文,2008年。
【45】徐政維,氧化鋅薄膜與金屬電極接觸特性之研究,國立虎尾科技大學光電與材料科技研究所碩士論文,2008年。
【46】E. H. Rhoderick, and R. H. Williams, Metal-Semiconductor Contacts, Oxford Science Publication, 1988.
【47】D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons Inc., 1998.
【48】吳俊慶,以射頻共濺鍍系統於室溫下沉積透明導電膜之研究,國立虎尾科技大學光電與材料科技研究所碩士論文,2005年。
【49】林俊興,共濺鍍氧化銦鋅透明導電膜熱穩定性之研究,國立虎尾科技大學光電與材料科技研究所碩士論文,2006年。
【50】莊翔鈞,不同氣體環境熱處理氧化鋅緩衝層對共濺鍍薄膜特性影響之研究,國立虎尾科技大學光電與材料科技研究所碩士論文,2008年。
【51】汪建民,材料分析,中國材料科學學會,1998年。
【52】T. Minami, T. Yamamoto, Y. Toda, and T. Miyata, “Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering”, Thin Solid Films, Vol. 373, pp. 189-194 (2000).
【53】D. S. Liu, C. H. Lin, F. C. Tsai, and C. C. Wu, “Microstructure investigations of ITO films cosputtered with ZnO at room temperature”, J. Vac. Sci. Technol. A., Vol. 24 (3), pp. 694-699 (2006).
【54】H. B. Michaelson, “The work function of the elements and its periodicity”, J. Appl. Phys., Vol. 48, No. 11, pp. 4729-4733 (1977).
【55】H. D. Shashikala, “Transport properties of titanium aluminides”, Mater. Sci. Eng. B, Vol. 31, pp. L1-L3 (1995).
【56】C. D. Wagner, J. F. Moulder, L. E. Davis, and W. M. Riggs, Handbook of X-ray photoelectron spectroscopy., Perking-Elmer Corporation, Physical Electronics Division (end of book).
【57】A. Kale, S. Seal, N. Sobczak, J. Morgiel, and K. B. Sundaram, “Effect of deposition temperature on the morphology, structure, surface chemistry and mechanical properties of magnetron sputtered Ti70-Al30 thin films on steel substrate”, Surf. Coat. Technol., Vol. 141, pp. 252-261 (2001).
【58】V. Maurice, G. Despert, S. Zanna, P. Josso, M.-P. Bacos, and P. Marcus, “XPS study of the initial stages of oxidation of α2-Ti3Al and β-TiAl intermetallic alloys”, Acta Mater., Vol. 55, pp. 3315-3325 (2007).
【59】L. Vandenbulcke, D. Rats, M. I. De Barros, R. Beno?t, R. Erre, and P. Andreazza, “Two-step process for improved diamond deposition on titanium alloys at moderate temperature”, Appl. Phys. Lett., Vol. 72, pp. 501-503 (1998).
【60】G. Hopfeng?rtner, D. Borgmann, , I. Rademacher, G. Wedler, E. Hums, and G. W. Spitznagel, “XPS studies of oxidic model catalysts: Internal standards and oxidation numbers”, J. Electron. Spectrosc. Relat. Phenom., Vol. 63, p. 91-116 (1993).
【61】S. Archambeau, I. Se´guy, P. Jolinat, J. Farenc, P. Destruel, T.P. Nguyen, H. Bock, E. Grelet, “Stabilization of discotic liquid organic thin films by ITO surface treatment”, Appl. Surf. Sci., Vol. 253, pp. 2078-2086 (2006).
【62】L. W. Lai, and C. T. Lee, “Investigation of optical and electrical properties of ZnO thin films”, Mater. Chen. Phys., Vol. 110, pp. 393-396 (2008).
【63】T. Sz?r?nyi, L. D. Laude, I. Bert?ti, Zs. Geretovszky, and Z. K?ntor, “Low-fluence excimer laser irradiation-induced defect formation in indium-tin oxide films”, Appl. Surf. Sci., Vol. 96-98, pp. 363-369 (1996).
【64】X.-T. Zhao, K. Sakka, N. Kihara, Y. Takata, M. Arita, and M. Masuda, “Hydrophilicity of TiO2 thin films obtained by RF magnetron sputtering deposition”, Curr. Appl. Phys., Vol. 6, pp. 931-933 (2006).
【65】W. Zheng, Y. Liao, L. Li, Q. Yu, G. Wang, Y. Li, and Z. Fu, “Structure and properties of ZnO films grown on Si substrates with low temperature buffer layers”, Appl. Surf. Sci., Vol. 253, pp. 2765-2769 (2006).
【66】Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of post-annealing treatment on the structure properties of ZnO films”, Appl. Surf. Sci., Vol. 241, pp. 303-308 (2005).
【67】A. C. Schmitz, A. T. Ping, M. Asif Khan, Q. Chen, and J. W. Yang, and I. Adesida, “Metal Contacts to n-Type GaN”, J. Electron. Mater., Vol. 27, No. 4, pp. 255-260 (1998).
【68】S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors”, J. Cryst. Growth, Vol. 225, pp. 110-113 (1998).
【69】J. A. Aranovich, D. Golmayo, A. L. Fahrenbruch, and R. H. Bube, “Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis”, J. Appl. Phys., Vol. 51 (8), pp. 4260-4268 (1980).
【70】B. Ghosh, “Work function engineering and its applications in ohmic contact fabrication to II–VI semiconductors”, Appl. Surf. Sci., Vol. 254, pp. 4908-4911 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊