跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張書葦
研究生(外文):Shu-Wei Chang
論文名稱:利用散熱基板及緩衝層提昇上發光有機發光二極體之特性
論文名稱(外文):Improvement of top emission organic light emitting diodes by using heat dissipation substrate with buffer layer
指導教授:莊賦祥莊賦祥引用關係蔡裕勝
指導教授(外文):Fuh-Shyang JuangYu-Sheng Tsai
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:96
中文關鍵詞:上發光型有機發光二極體焦耳熱UV膠壽命不鏽鋼箔
外文關鍵詞:TEOLEDJoule heatUV glueLifetimeStainless steel foil
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將上發光型有機發光二極體(top emission OLED; TEOLED)製作於散熱基板上,以改善元件操作於高電壓電流密度之下所產生之焦耳熱,能藉由基板散熱特性傳導出去提升元件壽命。利用旋轉塗佈UV膠於銅基板上作為緩衝層,除可改善基板表面平坦化,且可藉由其絕緣的特性避免銅基板與元件電極短路。首先分別於玻璃基板、氮化鋁基板、銅基板上製作上發光型OLED,觀察不同基板對元件特性之影響。銅基板元件於20V時最高亮度為10020 cd/m2,溫度為29.1℃,11V時可得到最佳效率9.62 cd/A,且壽命方面較製作於玻璃基板之元件提升約10倍時間。接著比較不同UV膠厚度對元件特性之影響。實驗結果顯示,當旋塗於銅基板UV膠厚度為5.96 μm時,元件有較佳之特性,17V時可得最高亮度為14110 cd/m2,9V時可得最佳效率7.14 cd/A。之後,觀察玻璃基板表面旋轉塗佈散熱UV膠,探討元件光電特性之影響。實驗結果顯示,旋塗散熱UV膠之元件13V時可得最高亮度9439 cd/m2,溫度為39.87℃,10V時可得最佳效率5.39 cd/A,相較於未旋塗散熱膠的元件最高溫度降低了15℃左右,且藉由粒子散射特性可提升發光視角。最後將上發光有機發光二極體製作於可撓式金屬箔基板上,以提升其光電特性,銅箔(Cu foil)與不鏽鋼箔(Stainless steel foil)元件最高亮度分別為10310 cd/m2 (18V)與6250 cd/m2 (15V),操作於11V之下其最大發光效率分別為7.32 cd/A與7.51 cd/A 。另外製作天藍光OLED元件,其發光層摻雜濃度為2%時元件可得最佳特性,其亮度與效率分別為10700 cd/m2與3.68 cd/A。
In order to improve the device performance, we fabricated top emission OLED (TEOLED) on the heat dissipation substrates that can reduce the influence of joule heat while the devices are operating. In this experiment, UV glue was spin coated onto substrate as the buffer layer. It could effectively smooth the surface as an isolation layer and avoided a short circuit of the electrode. This study we fabricated TEOLED on different substrates. The optimum luminance and efficiency of Cu substrate device were 10020 cd/m2, 9.62 cd/A, respectively. The lifetime for TEOLED fabricated on Cu substrate device is greatly 10 times longer than those on glass substrate. In addition, we spin coated different thickness UV glue on Cu substrate and the ideal buffer layer thickness was 5.96 μm. The optimum luminance and efficiency were 14110 cd/m2 and 7.14 cd/A, respectively. Furthermore, we spin coated heat dissipation UV glue on the surface of glass devices to fabricated TEOLED. The maximum luminance and efficiency of devices were 9439 cd/m2 and 5.4 cd/A, respectively. The temperature of device was reduced 15℃ than the uncoated device and the roughing of the device surface by the mica nanoparticles increased the EL intensity for each view angle. Finally, we fabricated TEOLED on the flexible metal foil substrates. The maximum luminance and efficiency of Cu foil device were 10310 cd/m2 and 7.32 cd/A, and the Stainless steel foil device were 6250 cd/m2 and 7.51 cd/A, respectively. In addtition, we fabricated the sky blue OLED. The optimal performance while the emitting layer doping concentration was 2%. The maximum luminance and efficiency of device were 10700 cd/m2 and 3.68 cd/A, respectively.
摘要 ......................................................................................................................................i
Abstract .....................................................................................................................................ii
致謝 ....................................................................................................................................iii
表目錄 ....................................................................................................................................vi
圖目錄 ...................................................................................................................................vii
第一章 緒論..............................................................................................................................1
1.1 有機發光二極體簡介.................................................................................................1
1.2 有機發光二極體驅動方式.........................................................................................3
1.3 研究動機.....................................................................................................................7
第二章 有機發光二極體發光原理..........................................................................................8
2.1 有機發光二極體發光機制.........................................................................................8
2.2 有機發光二極體結構及材料...................................................................................14
2.3 有機發光二極體劣化機制.......................................................................................22
2.3.1 本質劣化的機制..........................................................................................22
2.3.2 非本質劣化的機制......................................................................................23
2.4 有機發光二極體之封裝...........................................................................................25
2.5 上發光型有機發光二極體簡介...............................................................................26
2.6 上發光型有機發光二極體發展概述.......................................................................28
2.7 上發光型有機發光二極體的微共振腔效應...........................................................34
第三章 實驗方法....................................................................................................................36
3.1 元件基板之參數.......................................................................................................39
3.1.1 銅基板、氮化鋁基板參數..........................................................................39
3.1.2 玻璃基板參數..............................................................................................40
3.1.3 銅箔(Cu foil)、不鏽鋼箔(Stainless steel foil)基板參數.............................40
3.1.4 ITO 玻璃基板參數........................................................................................40
3.2 元件基板之清洗.......................................................................................................40
3.3 旋轉塗佈緩衝層UV 膠...........................................................................................40
3.4 陽極金屬層薄膜之蒸鍍...........................................................................................42
3.5 元件有機材料之選用...............................................................................................44
3.6 有機層薄膜之蒸鍍...................................................................................................46
3.7 陰極金屬層薄膜之蒸鍍...........................................................................................48
3.8 元件之封裝...............................................................................................................49
3.9 元件光電特性量測...................................................................................................49
第四章 結果與討論................................................................................................................51
4.1 上發光型有機發光二極體散熱基板與表面溫度特性之研究...............................51
4.1.1 比較以Glass、AlN、Cu 不同基板製作上發光型有機發光二極體(TEOLED)對元件特性之影響....................................................................................51
4.1.2 比較旋轉塗佈不同厚度之UV 膠緩衝層對元件特性之影響..................60
4.2 使用散熱UV 型膠製作上發光型有機發光二極體對元件特性之影響...............63
4.3 可撓式金屬基板製作上發光型有機發光二極體之研究.......................................67
4.4 天藍光有機發光二極體之研究...............................................................................71
第五章 結論............................................................................................................................75
未來展望.................................................................................................................................77
參考文獻.................................................................................................................................78
附錄1 中區及雲嘉區2008 影像顯示專題實作競賽暨研討會..........................................83
附錄2 2008 影像顯示科技論文獎.......................................................................................85
附錄3 2009 International Conference on Solid State Devices and Materials .......................90
Extended Abstract.....................................................................................................................93
簡歷 .......................................................................................................................................96
[1]C. Hosokawa, H. Higashi, T. Kusumoto, “Novel structure of organic electroluminescence cells with conjugated oligomers,” Appl. Phys. Lett., vol. 62, pp. 3238-3240, 1993.
[2]M. A. Baldo, V. G. Kozlov, P. E. Burrows, S. R. Forrest, V. S. Ban, B. Koene, and M. E. Thompson, “Low pressure organic vapor phase deposition of small molecular weight organic light emitting device structures,”Appl. Phys. Lett., vol. 71, pp. 3033-3035, 1997.
[3]M. Suzuki, T. Hatakeyama, S. Tokito, and F. Sato, ”High-efficiency white phosphorescent polymer light-emitting devices,” IEEE J. Select. Topics Quantum Electron., vol. 10(1), pp. 115-120, 2004.
[4]D. Pribat and F. Plais, ”Matrix addressing for organic electroluminescent displays,” Thin Solid Films, vol. 383, pp. 25-30, 2001.
[5]F. Zhu, X. T. Hao, O. K. Soo, Y. Li, and L. W. Tan, ”Polymer electronics systems-polytronics,” Proc. IEEE, vol. 93(8), pp. 1440-1446, 2005.
[6]A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys., vol. 80, pp. 6954-6964, 1996.
[7]S. K. So, W. K. Choi, L. M. Leung and K. Neyts, ”Interference effects in bilayer organic light-emitting diodes,” Appl. Phys. Lett., vol. 74, pp. 1939-1941, 1999.
[8]S. Chung, J. H. Lee, J. Jeong, J. J. Kim and Y. Hong, “Influence of Substrate Thermal Conductivity on OLED Lifetime,” International Meeting on Information Display 2008, Ilsan, Korea, pp. 1026-1029.
[9]C. Gärditz and A. Winnacker, “Impact of Joule heating on the brightness homogeneity of organic light emitting devices,” Applied Physics Letters, vol. 90, pp. 103506, 2007.
[10]A. Dodabalapur, Bell Lab., ”Organic light emitting diodes,” Solid State Com., vol. 102, pp. 259-267, 1997.
[11]J. Yang and J. Shen, ”Doping effects in organic electroluminescent devices,” J. Appl. Phys., vol. 84, pp. 2105-2111, 1998.
[12]K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi and K. Seki, ”Electronic structures of organic molecular materials for organic electroluminescent devices studied by ultraviolet photoemission spectroscopy,” J. Appl. Phys., vol. 83, pp. 4928-4938, 1998.
[13]A. L. Burin, M. A. Patner, ”Exciton Migration and Cathode Quenching in Organic Light Emitting Diodes,” J. Phys. Chem. A, vol. 104, pp. 4704-4710, 2000.
[14]S. A. Jenekhe and S. Yi, ”Efficient photovoltaic cells from semiconducting polymer heterojunctions,” Appl. Phys. Lett., vol. 77, pp. 2635-2637, 2000.
[15]S. M. Kelly, “Flat Panel Displays Advanced Organic Materials,” The Royal Society of Chemistry, Cambridge, 2000.
[16]H. Kanno, Y. Hamada, and H. Takahashi, ”Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays,” IEEE J. Select. Topics Quantum Electron., vol. 10(1), pp. 30-36, 2004.
[17]C. W. Tang, S. A. VanSlyke, and C. H. Chen, ”Electroluminescence of doped organic thin films,” J. Appl. Phys., vol. 65, pp. 3610-3616, 1989.
[18]M. Klessinger, J. Michl, “Excited States and Photochemistry of Organic Molecules,” VCH Publishers, New York, 1995.
[19]T. Ishida, H. Kobayashi, and Y. Nakato, ”Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., vol. 73, pp. 4344-4350, 1993.
[20]H. K. Kim, K. S. Lee, and J. H. Kwon, ”Transparent indium zinc oxide top cathode prepared by plasma damage-free sputtering for top-emitting organic light-emitting diodes,” Appl. Phys. Lett., vol. 88, pp. 012103, 2006.
[21]B. Kumar, H. Gong, and R. Akkipeddi, ”High mobility undoped amorphous indium zinc oxide transparent thin films,” J. Appl. Phys., vol. 98, pp. 073703, 2005.
[22]M. Ishii, T. Mori, H. Fujikawa, S. Tokito, Y. Taga, ”Improvement of organic electroluminescent device performance by in situ plasma treatment of indium–tin-oxide surface,” Journal of Luminescence, vol. 87-89, pp. 11651167, 2000.
[23]J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast and F. Cacialli, “Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance,” J. Appl. Phys., vol. 84, pp. 6859-6870, 1998.
[24]Y. Iwama, D. C. Cho, T. Mori and T. Mizutani, Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, pp. 718-721, 2003.
[25]H. Aziz, Z. Popovic, S. Xie, A. M. Hor, N. X. Hu, C. Tripp and G. Xu, ”Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting devices,” Appl. Phys. Lett., vol. 72, pp. 756-758, 1998.
[26]J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, and J. A. Goitia, ”Degradation and failure of MEH-PPV light-emitting diodes,” J. Appl. Phys., vol. 79, pp. 2745-2751, 1996.
[27]H. Suzuki and S. Hoshino, ”Effects of doping dyes on the electroluminescent characteristics of multilayer organic light-emitting diodes,” J. Appl. Phys., vol. 79, 8816-8822, 1996.
[28]C. Ganzorig, K. Suga, M. Fujihira, ”Alkali metal acetates as effective electron injection layers for organic electroluminescent devices,” Mater. Sci. Eng. B, vol. 85, pp. 140-143, 2001.
[29]C. Ganzorig and M. Fujihira, ”Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition,” Appl. Phys. Lett., vol. 85, pp. 4774-4776, 2004.
[30]G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen, and N. Peyghambarian, ”Highly efficient and bright organic electroluminescent devices with an aluminum cathode,” Appl. Phys. Lett., vol. 71, pp. 1762-1764, 1997.
[31]S. A. Van Slyke, C. H. Chen, and C. W. Tang, ”Organic electroluminescent devices with improved stability,” Appl. Phys. Lett., vol. 69, pp. 2160-2162, 1996.
[32]S. T. Lee, Z. Q. Gao and L. S. Hung, ”Metal diffusion from electrodes in organic light-emitting diodes,” Appl. Phys. Lett., vol. 75, pp. 1404-1406, 1999.
[33]P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, ”Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett., vol. 65, pp. 2922-2924, 1994.
[34]M. Fujihira, L. M. Do, A. Koike, and E. M. Han, ”Growth of dark spots by interdiffusion across organic layers in organic electroluminescent devices,” Appl. Phys. Lett., vol. 68, pp. 1787-1789, 1996.
[35]C. Hosokawa, M. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, T. Kusumoto,” Organic multi-color electroluminescence display with fine pixels,” Synth. Metals., vol. 91, pp. 3-7, 1997.
[36]G. Gu, V. Bulovic, P. E. Burrows, S. R. Forrest, and M. E. Thompson, ” Transparent organic light emitting devices,” Appl. Phys. Lett., vol. 68, pp. 2606-2608, 1996.
[37]G. Parthasarathy, P. E. Burrows, V. Khalfin, V. G. Kozlov, and S. R. Forrest, “A metal-free cathode for organic semiconductor devices,” Appl. Phys. Lett., vol.72, pp. 2138-2140, 1998.
[38]G. Parthasarathy, C. Adachi, P. E. Burrows, and S. R. Forrest, ” High-efficiency transparent organic light-emitting devices,” Appl. Phys. Lett., vol. 76, pp. 2128-2130, 2000.
[39]L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett., vol. 78, pp. 544-546, 2001.
[40]S. Han, X. Feng, and Z. H. Lu, “Transparent-cathode for top-emission organic light-emitting diodes,” Appl. Phys. Lett., vol. 82, pp. 2715-2717, 2003.
[41]C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode,” Appl. Phys. Lett., vol. 83, pp. 5127-5129, 2003.
[42]C. Qiu, H. Peng, H. Chen, Z. Xie, M. Wong, and H. S. Kwok, IEEE Trans. Electron. Dev., vol. 51, pp. 1207, 2004.
[43]R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer,” Appl. Phys. Lett., vol. 84, pp. 4614-4616, 2004.
[44]H. Riel, S. Karg, T. Beierlein, W. Riess, and K. Neyts, J. Appl. Phys., vol. 94, pp. 5290, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top