跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 19:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭哲宇
研究生(外文):Tse-Yu Cheng
論文名稱:三維紅外光譜法探討液晶分子傾角
論文名稱(外文):Three-dimensional infrared spectrometer study the tilt angle of liquid crystal molecules
指導教授:游信和游信和引用關係
指導教授(外文):Hsin-Her Yu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:58
中文關鍵詞:向列型液晶三維紅外光譜預傾角
外文關鍵詞:nematic liquid crystal3D-FTIRpretilt angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,液晶顯示器已成為廣泛使用的平面顯示器之一,其中ㄧ些關鍵參數,如液晶盒間距、預傾角,明顯地影響其光學特性。而又以量測液晶實際傾角至為關鍵。本論文主要目的在於提供一種三維紅外光譜量測裝置,直接量測向列型液晶在外加電場作用下的傾斜角度變化。我們發現,在液晶分子(E7)中5CB的氮鍵(碳氮伸縮振動C≡N)與電場有明顯的相依性,在三維紅外光譜分析中,除可直接量測未加電場時的液晶傾角,亦即預傾角外,還根據三軸紅外光譜發現,配向方向的紅外光譜吸收值在電場作用下明顯降低,而厚度方向的紅外光譜吸收值明顯提高,證明外加電場會使C≡N鍵從原來的液晶盒配向方向順著電場作用旋轉到液晶盒厚度方向。這與使用相位差量測法而得到的液晶分子傾斜角具有相同的變化趨勢。
In recent years, liquid crystal displays (LCDs) have becoming one of the most widely used flat panel displays. Some critical parameters of the LCD, such as cell gap and molecule pretilt angle, are significantly affecting their optical properties. Therefore, it’s most important key point for measuring the tilt angle of LCDs. In this study, we provided a simple method, three-dimensional Fourier transform infrared spectroscopy (3-D FTIR), to measure the tilt angle of the liquid crystal molecules in a nematic liquid crystal (E7) cell as power applied. From the infrared spectra analysis, we found that the nitrile band for 5CB of NLC molecules array was strongly affected by external voltage. Moreover, the pretilt angles of the LC cells can be predicted by 3-D FTIR without voltage supplied. Infrared absorption in the LC cell thickness direction was enhanced but the peak in the rubbing direction was reduced after applied voltage rising. Furthermore, the tilt angles of the liquid crystal cell under different voltages possess same tendency for both Heterodyne Interferometric method and 3-D FTIR method predictions.
中文摘要..................................................i
Abstract.................................................ii
誌謝....................................................iii
目錄.....................................................iv
表目錄...................................................vi
圖目錄..................................................vii
第一章 緒論...............................................1
1.1 前言..................................................1
1.2 液晶的簡介............................................2
1.2.1 液晶的種類..........................................2
1.3 液晶物理..............................................3
1.3.1 液晶的參數..........................................8
1.4 外差干涉量測技術.....................................10
1.5 液晶分子的結構.......................................14
1.6 三維紅外光譜的量測技術與理論.........................18
1.6.1 三維紅外光譜量測技術...............................18
1.6.2 三維紅外光譜理論...................................19
1.7 專利檢索.............................................24
第二章 實驗..............................................26
2.1 實驗材料.............................................26
2.2 實驗流程.............................................28
2.3 3D-FTIR量測..........................................29
2.4 外差干涉法量測.......................................30
第三章 結果與討論........................................31
3.1 實驗分析.............................................31
3.1.1 外差干涉法量測分析.................................31
3.1.2 三維紅外光譜分析...................................34
第四章 結論..............................................48
第五章 未來展望..........................................49
參考文獻.................................................50
英文論文大綱.............................................52
個人簡歷.................................................57
[1]S. M. Kelly, M. O''Neill, “Liquid crystals for electro-optic applications”, Handbook of Advanced Electronic and Photonic Materials and Devices, 1-66 (2001).
[2]P. J. Collings, M. Hird, “Introduction to liquid crystals chemistry and physics”, 1-14 (1997).
[3]A. Yariv, “Optical Electronics,” (Saunders College Publishing, USA), (1991).
[4]I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Physics Reports, 471, 221-267 (2009).
[5]P. G. de Gennes and J. Prost, “The physics of liquid crystals,” (Oxford University Press, New York), (1993).
[6]S. J. Hwang, “Precise Optical Retardation Measurement of Nematic Liquid Crystal Display Using the Phase-Sensitive Technique,” J. Display Technology, 1, 77-81 (2005).
[7]C. Chou, C. W. Lyu, and L. C. Peng, “Polarization differential-phase laser scanning microscope,” Appl. Opt., 40, 95-99 (2001).
[8]D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Precision Eng., 18, 161-163 (1996).
[9]I. C. Khoo and S. T. Wu, “Optics and Nonlinear Optics of Liquid Crystals, Singapore: World Scientific,” 148-158 (1993).
[10]E. Lueder, “Liquid Crystal Displays” Hoboken, NJ: Wiley, ch 3. (2004).
[11]H. Skupin, F. Kremer, S. V. Shilov, P. Stein, and H. Finkelmann, “Time-Resolved FTIR Spectroscopy on Structure and Mobility of Single Crystal Ferroelectric Liquid Crystalline Elastomers,” Macromolecules, 32, 3746-3752 (1999).
[12]St. Limmer, “Physical Principles Underlying the Experimental Methods for Studying the Orientational Order of Liquid Crystals,” Fortschr. Phys., 37, 879-931 (1989).
[13]A. Kocot, R. Wrzalik, and B. Orgasinska, “Rotational bias of an antiferroelectric liquid crystal studied by polarized Fourier transform infrared spectroscopy”, Phy. Rev. E, 59, 551-555 (1999).
[14]A. A. Sigarev, J. K. Vij, Yu. P. Panarin, and J. W. Goodby, “Ferrielectric liquid crystal subphase studied by polarized Fourier-transform infrared spectroscopy,” Phy. Rev. E, 62(2), 2269-2278 (2000).
[15]W. G. Jang, Cheol S. Park, and Noel A. Clark, ”Time-resolved infrared spectroscopy of molecule/binding site reorientationduring ferroelectric liquid crystal electro-optic switching,” Phy. Rev. E, 62(4), 5154-5159 (2000).
[16]W. G. Jang, Cheol S. Park, K. H. Kim, Matthew A. Glaser, and Noel A. Clark, “Infrared spectroscopic study of molecular hydrogen bonding in chiral smectic liquid crystals,” Phy. Rev. E, 62(4), 5027-5035 (2000).
[17]L. J. Fina, J. L. Koenig, “Analysis of Trichroic Infrared Absorption in Solids. I. Description of Methods,” J. Polymer Sci. Part B, 24, 2509-2524 (1986).
[18]P. G. Schmidt, “Polyethylene Terephthalate Structural Studies,” J. Polymer Sci.: Part A, 1, 1271-1292 (1963).
[19]L. McKenna, L. S. Miller, I. R. Peterson, “Polymer dispersed liquid crystal film for modulating infra-red radiation,“ Polymer, 45, 6977-6984 (2004).
[20]H. H. Yu, L. J. Fina, “Trichroic Infrared Studies of Oriented Nylon 11,” macromolecules, 27, 6192-6200 (1994).
[21]B. G. Wall and J. L. Koenig, “Infrared Microspectroscopoc Investigation of the Diffusion of E7 into Poly(butyl methacrylate),” Appl. Spec., 52, 1377-1382 (1998).
[22]J. K. Labanowskiand and J. W. Andzelm, “Density Functional Methods in Chemistry,” (Springer Verlag, New York), (1991).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top