跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 16:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡承翰
研究生(外文):Cheng-Han Tsai
論文名稱:薄膜微晶矽特性分析與研製
論文名稱(外文):Characterization and Fabrication of Thin Film Microcrystalline Silicon
指導教授:莊賦祥莊賦祥引用關係
指導教授(外文):Fuh Shyang Juang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:91
中文關鍵詞:微晶矽薄膜
外文關鍵詞:microcrystalline siliconthin film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:456
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本論文主要研究以超高頻電漿增強式化學氣相沉積系統(Very High Frequency Plasma Enhanced Chemical Vapor Deposition ; VHF- PECVD)研製氫化微晶矽(μc-Si:H)薄膜最佳化條件,來應用於太陽能電池中PIN三層的本質吸收層(i-type)的研究,在調變氫氣稀釋比(SiH4/SiH4+H2)、製程壓力、射頻功率、基板溫度等製程條件對微晶矽薄膜結晶的影響。
在本質層分析方面,實驗主要以調整氫氣稀釋比(SiH4/SiH4+H2)例範圍在1至4%,來觀察薄膜是否有微晶特性,再搭配調變製程壓力、射頻功率、基板溫度等參數來提昇結晶度。薄膜特性分析利用拉曼光譜儀(Raman)、X光繞射儀(XRD)來分析薄膜為非晶矽或微晶矽表面、結晶度比例、奈米晶粒大小,傅立葉轉換紅外線光譜儀(FTIR)來分析薄膜氫含量、Si-H鍵結變化,UV/VIS/IR光譜儀來分析薄膜光能隙(Eg)及I-V量測來分析活化能特性。
結果分析方面,利用氫氣稀釋法提高氫氣稀釋比例能有效在沈積矽薄膜時,能沈積出微晶矽薄膜,並在(SiH4/SiH4+H2)1%時有最佳結晶度(~58.3%)。在分別比較不同射頻功率和基板溫度製程上,發現射頻功率降低和製程溫度增加能有效提昇微晶矽的結晶比例,分別有最佳結晶度100W(~65.8%)和400℃(~70.2%)。
Abstruct
This paper main research using Very High Frequency Plasma Enhanced Chemical Vapor Deposition development hydrogenate microcrystalline Si thin film optimization condition, applies in the solar cell the PIN three layer intrinsic absorbance layer the research, Change the hydrogen dilute proportion, chamber pressure, radio frequency power, substrate temperature the influence which crystalline to the microcrystalline Si thin film.
In intrinsic level analysis aspect, the experiment mainly adjusts the hydrogen dilution ratio scope in 1 to 4%, observes the thin film whether to have the microcrystalline characteristic, the matching accent changes chamber pressure, radio frequency power and substrate temperature system parameters promotes the increase crystalline. The thin film characteristic analysis using Raman Spectroscopy and X-ray Diffractometer analyzes the thin film for amorphous Si or the microcrystalline Si surface, the Crystalline volume fraction, the nano grain size, Fourier transforms infrared spectrometer to analyze the thin film hydrogen content, the Si-H bond, the UV/VIS/IR spectroscope analyzes thin film photon energy (Eg) and the I-V analyzes the active energy characteristic.
The result analysis aspect, increase the hydrogen dilution ratio using the hydrogen dilution method to be able to deposition Si time effectively the thin film, can deposition the microcrystalline Si thin film, when (SiH4/SiH4+H2)1% has the best crystalline (~58.3%), in the distinction quite different radio frequency power and in the substrate temperature, discovered that the radio frequency power reduces with the substrate temperature increases can increase the microcrystalline Si crystalline proportion effectively, has the best Crystalline volume fraction 100W(~65.8%) and 400℃(~70.2%).
目錄
中文摘要.................................................. i
英文摘要(Abstract)........................................ⅱ
誌謝..................................................... ⅲ
目錄..................................................... iv
表目錄................................................... vi
圖目錄.................................................. vii
第一章 緒論............................................... 1
1.1 前言.................................................. 1
1.2 太陽能電池種類的介紹.................................. 4
1.3 氫化非晶矽/微晶矽薄膜之相關文獻回顧................... 7
1.4 研究動機與目的....................................... 10
第二章 理論探討.......................................... 11
2.1 薄膜的成長機制....................................... 11
2.2 電漿原理............................................. 13
2.3 以VHF-PECVD 成長矽薄膜之影響性....................... 15
2.4 氫氣稀釋法對矽薄膜之影響............................. 16
第三章 氫化微晶矽薄膜的製作與分析........................ 19
3.1 實驗前準備........................................... 19
3.1.1 實驗用氣體與材料................................... 19
3.1.2 實驗目的........................................... 19
3.2 氫化微晶矽薄膜的實驗製作流程......................... 20
3.2.1 實驗流程圖......................................... 20
3.2.2 基板的清洗......................................... 21
3.2.3 微晶矽薄膜的沈積....................................22
3.3 儀器量測原理與分析方法............................... 26
2.3.1 表面輪廓儀......................................... 26
2.3.2 拉曼光譜儀(Raman).................................. 26
2.3.3 多功能X光繞射儀(XRD)............................... 27
2.3.4 傅氏轉換紅外線光譜儀(FTIR) ........................ 29
2.3.5 原子力顯微鏡(AFM) ................................. 31
2.3.6 穿透光譜儀(UV/VIS/IR).............................. 31
2.3.7 活化能量測......................................... 32
第四章 結果與討論........................................ 35
4.1 調變氫氣稀釋比對微晶矽薄膜結晶度之影響............... 35
4.2 調變基板溫度對微晶矽薄膜結晶度之影響................. 47
4.3 調變射頻功率對微晶矽薄膜結晶度之影響................. 53
第五章 結論.............................................. 59
參考文獻................................................. 61
附錄..................................................... 67
英文論文大綱(Extended Abstract).......................... 88
簡歷..................................................... 91
表目錄
表3-1 Si-H 鍵結模式及對應的吸收峰波數.................... 30
表4-1 氫氣稀釋比(SiH4/(SiH4+H2))1~4%,沈積15分鐘的沈積速率... 41
表4-2 依照表4-1 所測出的沈積速率,以厚度5000A做薄膜沈積...41
表4-3 氫氣稀釋比(SiH4/(SiH4+H2))1~4%之結晶度比........... 41
表4-4 氫氣稀釋比(SiH4/(SiH4+H2))1~4%之氫含量............. 41
表4-5 氫氣稀釋比(SiH4/(SiH4+H2))1~4%之晶粒大小........... 43
表4-6 氫氣稀釋比(SiH4/(SiH4+H2))1~4%之活化能值........... 46
表4-7 氫氣稀釋比(SiH4/(SiH4+H2))1~4%之光能隙值........... 46
表4-8 固定氫稀釋比SC 1%,改變基板溫度200℃~400℃製程條件. 51
表4-9 改變基板溫度200℃~400℃之結晶度比.................. 51
表4-10 改變基板溫度200℃~400℃之氫含量................... 51
表4-11 固定氫稀釋比SC 1%,改變射頻功率100~600W 製程條件.. 57
表4-12 改變射頻功率100~600W 之結晶度比................... 57
表4-13 改變射頻功率100~600W 之氫含量..................... 58
圖目錄
圖1-1 太陽能電池種類...................................... 4
圖1-2 (a)單晶(b)充氫非晶矽結構示意圖..................... 10
圖2-1 薄膜沈積步驟的分解圖,(a)長晶 (b)晶粒成長 (c)晶粒聚結 (d)縫道填補(e)沈積膜的成長............................... 12
圖2-2 化學氣相沈積的五個主要機構......................... 12
圖2-3 電漿之氣壓與電子溫度Te 和電漿溫度Tg 之關係圖....... 14
圖2-4 以VHF-PECVD 對不同氫氣稀釋比(SiH4/SiH4+H2)製作氫化微晶矽薄膜形成結晶的形狀、尺寸與表面粗糙度................... 17
圖2-5 以厚度在5000Å,不同氫氣稀釋比製作的矽薄膜結構結晶變化.... 17
圖3-1 PECVD 面板及系統示意圖............................. 24
圖3-2 金屬薄膜蒸鍍系統示意圖............................. 25
圖3-3 高斯分佈擬和之拉曼光譜圖........................... 27
圖3-4 JCPDs Card 粉末繞射資料............................ 28
圖3-5 低掠角X 光繞射示意圖............................... 29
圖3-6 光譜波長與能量對照圖............................... 32
圖3-7 量測矽薄膜之暗電導及活化能之示意圖................. 33
圖3-8 蒸鍍鋁之金屬光罩................................... 33
圖3-9 蒸鍍完鋁後之試片圖................................. 34
圖4-1 氫氣稀釋比(SiH4/(SiH4+H2))1~4%之沈積速率圖......... 39
圖4-2 氫氣稀釋比(SiH4/(SiH4+H2))1~4%之拉曼分析圖......... 39
圖4-3 以Gaussian fit 氫氣稀釋比(SiH4/(SiH4+H2))1~3%之拉曼圖.............. 40
圖4-4 氫氣稀釋比(SiH4/(SiH4+H2))1~4%之FTIR 圖............ 42
圖4-5 氫氣稀釋比(SiH4/(SiH4+H2))1~4%,630-640cm-1 搖擺模之FTIR... 圖42
圖4-6 氫氣稀釋比(SiH4/(SiH4+H2))1~4%之X 光繞射圖......... 43
圖4-7 氫氣稀釋比(SiH4/(SiH4+H2))1~4%之AFM 圖............. 44
圖4-8 氫氣稀釋比(SiH4/(SiH4+H2))1~4%之光能隙萃取圖....... 45
圖4-9 氫氣稀釋比(SiH4/(SiH4+H2))1%之活化能萃取圖......... 46
圖4-10 基板溫度200℃∼400℃之沈積速率圖.................. 49
圖4-11 固定氫稀釋比SC 1%,改變基板溫度200℃~400℃之拉曼分析圖...49
圖4-12 以Gaussian fit 基板溫度200∼400℃之高斯擬合圖..... 50
圖4-13 改變基板溫度200~400℃之FTIR 圖.................... 52
圖4-14 基板溫度200~400℃,吸收峰630-640cm-1 搖擺模之FTIR 圖..... 52
圖4-15 射頻功率100∼600W 之沈積速率圖.................... 55
圖4-16 固定氫稀釋比SC 1%,改變射頻功率100∼600W 之拉曼分析圖...55
圖4-17 以Gaussian fit 改變射頻功率100∼600W 之高斯擬合圖. 56
圖4-18 改變射頻功率100∼600W 之FTIR 圖................... 58
圖4-19 改變射頻功率100∼600W 吸收峰630-640cm-1 搖擺模之FTIR 圖...58
參考文獻
1.A. Shah, J. Meier, E. Vallat-Sauvain, C. Droz, U. Kroll, N. Wyrsch, J. Guillet and U. Graf, “Microcrystalline silicon and ‘micromorph’ tandem solar cells”, Thin Solid Films, Vol.403-404, pp.179 (2002).
2.黃信雄;「氣候變化綱要公約」;太陽能學刊 第2卷第一期, 1997
3.太陽能電池-21世紀的新能源,科學新天地。
4.經濟部能源局網站,能源政策與措施。
5.H. F. Sterling and R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge”, Solid-State Electronics, Vol.8, pp.653-654 (1965).
6.R. C. Chittick, J. H. Alexander and H. F. Sterling, J. Electrochem. Soc, Vol 116, pp77-81 (1969).
7.W.E Spear and P.G Le Comber, “Investigation of the localised state distribution in amorphous Si films”, Journal of Non-Crystalline Solids, Vol 8-10, pp727-738 (1972).
8.W.E Spear and P.G Le Comber, “Substitutional doping of amorphous silicon”, Solid State Communications, Vol 17, pp1193-1196 (1975).
9.W. E. Spear and P. Le Comber, “Electronic properties of substitutionally doped amorphous Si and Ge”, Philosophical Magazine, Vol 33, pp935-949 (1976).
10.A. Triska, D. Dennison and H. Fritzsche, Bull. Am. Phy. Soc. Vol 20, pp39 (1975)
11.D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Appl. Phys. Lett, Vol.31, pp.292 (1977).
12.D.L. Staebler, C.R. Wronski, “Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon”, J. Appl. Phys. 51, 3262-3268 (1980).
13.S. Guha, J. Yang, “Effect of microvoids on initial and light-degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett. 61, pp.1444-1446 (1992).
14.P. Delli Veneri, L. V. Mercaldo, C. Minarini, C. Privato, “VHF PECVD microcrystalline silicon: from material to solar cells”, Thin Solid Films, Vol. 451-452, pp269-273 (2004).
15.R. Fluckiger, J. Meier, M. Goetz, and A. Shah, “Electrical properties and degradation kinetics of compensated hydrogenated microcrystalline silicon deposited by very high-frequency-glow discharge”, J. Appl. Phys. 77(2), pp.712 (1995).
16.R. Platz and S. Wagner, “Intrinsic microcrystalline silicon by plasma-enhanced chemical vapor deposition from dichlorosilane”, Appl. Phys. Lett. 73, pp.1236 (1998).
17.R. Fluckiger, J. Meier, M. Goetz, and A. Shah, “Electrical properties and degradation kinetics of compensated hydrogenated microcrystalline silicon deposited by very high-frequency-glow discharge”, J. Appl. Phys. 77(2), pp.712 (1995).
18.P. Torres, J. Meier, R. Flückiger, U. Kroll, J. A. Anna Selvan, H. Keppner, and A. Shah, “Device grade microcrystalline silicon owing to reduced oxygen contamination”, Appl. Phys. Lett. 69, pp.1373 (1996).
19.A. Shah, E. Sauvain, N. Wyrsch, H. Curtins, B. Leutz, D.S. Shen, V. Chu, S. Wagner, H. Schade, H.W.A. Chao , ”a-Si:H films deposited at high rates in a ''VHF'' silane plasma: potential for low-cost solar cells”, Electron Lett, Vol.1, pp282-287 (1988).
20.L. Guo, M. Kondo, M. Fukawa, K. Saitoh and A. Matsuda, “High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition”, Jpn. J. Appl. Phys, Vol 37, pp1116-1118 (1998)
21.H. Shirai, T. Arai, “Role of hydrogen in the growth of hydrogenated microcrystalline silicon”, Journal of Non-Crystalline Solids, pp.931-934 (1996).
22.R. Martins, A. Macarico, I. Ferreira, R. Nunes, A. Bicho and E. Fortunato, “Investigation of the amorphous to microcrystalline phase transition of thin Film silicon produced by PECVD”, Thin Solid Films, Vol 317, pp144-148 (1998).
23.A. Chowdhury, S. Mukhopadhyay, S. Ray, “Fabrication of thin film nanocrystalline silicon solar cell with low light-induced degradation ”, Solar Energy Materials & Solar Cells, Vol 93, pp597-603 (2009)
24.S. Morrison, A. Madan, “Deposition of amorphous silicon solar cells via the pulsed PECVD technique”, Scott Morrison and Arun Madan(IEEE), pp.928-931 (2000).
25.莊達人,VLSI製造技術,高立圖書有限公司,民國89年。
26.劉博文,半導體元件物理,高立圖書有限公司,民國92年。
27.S. S. Lyer, M. Arienzo and E. Fresat, “Low-temperature silicon cleaning via hydrogen passivation and conditions for epitaxy”, Appl. Phys. Lett, Vol.57, pp.893 (1990).
28.C. C. Tsai, G. B. Anderson and R. Thompson, “Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma”, Journal of Non-Crystalline Solids, Vol.137-139, pp.673-676 (1991).
29.P. Chaudhuri, S. Ray and A. K. Barua, ”The effect of mixing hydrogen with silane on the electronic and optical properties of hydrogenated amorphous silicon thin films”, Thin Solid Films, Vol.113, pp.261-270 (1984).
30.E. Vallat-Sauvain, U. Kroll, J. Meier and A. Shah, ”Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution”, J.Appl. Phys, Vol.87, pp.3137 (2000).
31.G. H. Lee, J. H. Yoon, “Role of Hydrogen in the Grain Growth in Microcrystalline Silicon Films”, Mater. Res. Soc. Symp. Proc, 910 (2006).
32.A. Matsuda, “Formation Kinetics and Control of Microcrystalline in μc-Si:H From Glow Dischrage Plasma”, Journal of Non-Crystalline Solids, Vol.59, pp.767 (1983).
33.C. C. Tsai, G.. B. Anderson, R. Thompson, B. Wacker, “Control of Silicon Network Structure in Plasma Deposition ”, Journal of Non-Crystalline Solids, Vol.114, pp.151 (1989).
34.K. Nakamura, K. Yoshida, S. Takeoka, I. Shimizu, ”Roles of Atomic Hydrogen in Chemical Annealing”, Jpn. J. Appl. Phys, Vol.34, pp.442 (1995).
35.T. Kaneko, K. Onisawa, M. Wakagi, Y. Kita and T. Minemura, “Crystalline Fraction of Microcrystalline Silicon Films Prepared by Plasma-Enhanced Chemical Vapor Deposition Using Pulsed Silane Flow”, Jpn. J. Appl. Phys, Vol.32, pp.4907-4911 (1993).
36.C. Droz, “Thin Film Microcrystalline Silicon Layers and Solar Cells : Microstructure and Electrical Performances”, In Institut de Microtechnique, Universite de Neuchatel (2003).
37.許樹恩、吳泰伯,X光繞射原理與材料結構分析,國科會精儀中心.
38.Y. Wang, X. Liao, H. Diao, and F. Yun, “Structural properties of polycrystalline silicon films formed by pulsed rapid thermal processing”, Mat. Res. Soc. Symp. Proc, Vol.507, pp.975-980 (1998).
39.M. H. Brodsky, M. Cardona and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B, Vol.16, pp.3556-3571 (1977).
40.G. Lucovsky, R. J. Nemanich and J. C. Knights, “Structural interpretation of the vibrational spectra of a-Si: H alloys”, Phys. Rev. B19, pp.2064-2073 (1979).
41.A. A. Longford, M. L. Fleet, and B. P. Nelson, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Phys. Rev B. Vol. 45, pp.13367 (1992).
42.U. Kroll, J. Meier, A. Shah, S. Mikhailov and J. Weber, “Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution”, J. Appl. Phys. 80 (9), (1996).
43.J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si”, Materials Research Bulletin, Vol.3, pp.37-46 (1968).
44.M. Stutzmann, D. K. Biegelsen and R. A. Street, Phys. Rev. B, Vol.35, pp.5666-5701 (1987).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top