跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 20:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙仁揚
研究生(外文):Ren-Yang Jhao
論文名稱:應用氧化鋅奈米柱於表面聲波紫外光檢測器
論文名稱(外文):Apply ZnO nanorods to surface acoustic wave ultraviolet photodetector
指導教授:水瑞鐏水瑞鐏引用關係
指導教授(外文):Walter Water
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:135
中文關鍵詞:氧化鋅奈米柱表面聲波光檢測器
外文關鍵詞:Zinc oxideNanorodSAWphotodetector
相關次數:
  • 被引用被引用:6
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今有許多不同類型之表面聲波元件,已經被廣泛應用在通訊及各種感測器上,而一般為了提升元件的效應,會使用高機電耦合係數之壓電材料,也因此使其能利用如質量負載效應及聲電響應等現象作為感測之原理。本研究利用氧化鋅良好之光電及壓電特性耦合表面聲波元件產生之聲電響應,藉以製作表面聲波紫外光感測器,並利用黃光微影製程及射頻磁控濺鍍系統,在ST切面石英及Y切面鈮酸鋰基板上沉積金屬電極及高c軸優選取向之氧化鋅薄膜,製作成表面聲波元件。利用化學水溶液法於氧化鋅薄膜上合成不同之氧化鋅奈米柱,研究其溶液濃度與不同種晶層厚度對氧化鋅奈米柱之特性影響,並將其作為增強吸收紫外光的結構,藉以製作出高靈敏度的表面聲波紫外光感測器,可感測出μW/cm2等級之紫外光源,探討以此結構製作之表面聲波元件,不同基板、金屬電極及成長時間之氧化鋅奈米柱對其在紫外光下元件之頻率響應及直流特性的影響,以及量測結果之比較。
關鍵字:氧化鋅;奈米柱;表面聲波;光檢測器
Today, there are many different types of the surface acoustic wave devices, has been widely used in communications and sensors of variety, but in general in order to enhance the effects of components will use the high electromechanical coupling coefficient of piezoelectric material, enable to use such as the mass lodaing or acoustoelectric response as the principle of the sensor. In this study, to utilized zinc oxide excellent photo-electric and piezoelectric properties of the coupling surface acoustic wave devices generated acoustoelectric response to produced the surface acoustic wave ultraviolet sensor, and used lithography process and RF magnetron sputtering system to deposited metal electrodes and zinc oxide thin film on ST-cut quartz and Y-cut lithium niobate substrate, can be obtained zinc oxide thin film with a high c-axis preferred orientation, used to fabrication the surface acoustic wave devices. To utilized chemicals hydrothermal method to synthetize different zinc oxide nanorods, and to investigate different solution concentration and seedlayer thickness effect of the characteristics of zinc oxide nanorods, and such as a enhance the absorption of ultraviolet light structure, in order to produce high sensitivity of surface acoustic wave ultraviolet sensor can detect a sense μW/cm2 of hierarchy ultraviolet source, in the study to explore the structure of the production of surface acoustic wave devices at the different substrates and different metal electrodes, as well as different growth times of zinc oxide nanorods of under different wavelengths UV source, the frequency response of the devices and the impact on the DC characteristics, to explore its characteristics of surface acoustic wave devcies and comparison of the measured results.
Keywords:Zinc oxide; Nanorod; SAW; photodetector
目錄
摘要.......................................................i
Abstract..................................................ii
致謝 ....................................................iii
目錄 .....................................................iv
表目錄 ..................................................vii
圖目錄 ...................................................ix
符號表 ..................................................xvi
一、 緒論..................................................1
1.1 前言...................................................1
1.2 文獻回顧...............................................2
1.2.1 表面聲波.............................................2
1.2.2 氧化鋅紫外光感測器...................................3
1.2.3 氧化鋅奈米結構.......................................4
1.3 本文架構...............................................7
二、 基礎理論..............................................8
2.1 壓電效應...............................................8
2.2 表面聲波元件..........................................10
2.2.1 表面聲波基本原理....................................10
2.2.2 表面聲波元件........................................12
2.2.3 表面聲波元件相關參數................................14
2.3 感測原理..............................................17
2.3.1 動能密度............................................18
2.3.2 表面聲波傳遞時的擾動................................18
2.3.3 質量負載效應(Mass loading)..........................22
2.3.4 聲電響應(acoustoelectric response)..................22
2.4 光吸收................................................27
三、氧化鋅薄膜與奈米柱之合成..............................28
3.1 薄膜濺鍍..............................................28
3.2 薄膜的生長機制........................................30
3.3 氧化鋅奈米柱成長機制..................................34
四、表面聲波元件製作與量測系統............................37
4.1 實驗流程..............................................37
4.2 壓電基板..............................................37
4.3 指叉電極設計..........................................39
4.4 微影製程..............................................40
4.5 氧化鋅薄膜濺鍍........................................43
4.6 成長氧化鋅奈米柱......................................43
4.7 量測儀器..............................................45
4.7.1 X光繞射儀(X-ray Diffraction,XRD)....................45
4.7.2 場發射式電子顯微鏡(SEM).............................46
4.7.3 原子力顯微鏡(Atomic Force microscopy, AFM).........46
4.7.4 螢光光譜儀(Photoluminescence Spectrometer, PL)......46
4.7.5 網路分析儀(Network Analyzer)........................47
4.7.6 I-V特性曲線與光源...................................48
五、氧化鋅特性分析........................................50
5.1 氧化鋅薄膜特性........................................50
5.1.1 不同濺鍍參數對氧化鋅薄膜之影響......................56
5.2 氧化鋅奈米柱之成長....................................60
5.2.1 不同薄膜對奈米柱形態之影響..........................62
5.2.2 應用於元件之氧化鋅奈米柱............................73
六、表面聲波紫外光檢測器之量測分析........................83
6.1 表面聲波元件特性量測..................................83
6.1.1 操作頻率與插入損耗..................................84
6.1.2 溫度頻率係數(TCF)之量測分析.........................94
6.2紫外光響應.............................................95
6.2.1 石英基板之元件......................................97
6.2.2 鈮酸鋰基板之元件...................................102
6.2.3 頻率響應變化之綜合比較.............................116
6.3 I-V特性..............................................119
七、結論與未來建議.......................................123
參考文獻.................................................125
Extended Abstract........................................131
作者簡歷.................................................135

表目錄
表2-1 壓電材料相關參數表..................................14
表4-1 指叉電極設計之參數..................................40
表4-2 指叉電極金屬沉積之濺鍍參數..........................42
表5-1 氧化鋅薄膜之濺鍍參數................................51
表5-2 不同分壓比之氧化鋅薄膜電阻率........................59
表6-1 指叉電及10μm線寬之表面聲波元件操作頻率.............85
表6-2 指叉電極5μm線寬之表面聲波元件操作頻率..............85
表6-3 溫度頻率係數之量測統計..............................94
表6-4 表面聲波紫外光檢測器對紫外光響應度比較.............118

圖目錄
圖1-1 氧化鋅結構圖.........................................6
圖2-1 壓電效應之示意圖.....................................9
圖2-2 彈性波在固體中之示意圖..............................10
圖2-3 固體中平面波的傳遞..................................11
圖2-4 雷利波於壓電基板表面之移動示意圖....................11
圖2-5 表面聲波元件之基本結構..............................13
圖2-6 無損介質中波的傳遞..................................21
圖2-7 漸逝電場示意圖......................................25
圖2-8 聲電響應等效電路圖..................................26
圖2-9 薄膜片電導對波速與衰減之關係圖......................26
圖3-1 濺鍍表面反應示意圖..................................30
圖3-2 基板表面成核之成長過程..............................32
圖3-3 三種薄膜成長方式之示意圖............................33
圖3-4 不同壓力與溫度下濺鍍薄膜之結構差異..................34
圖3-5 氧化鋅之極化與非極化平面............................36
圖3-6 氧化鋅成長晶面示意圖................................36
圖4-1 實驗流程圖..........................................38
圖4-2 指叉電極設計參數示意圖..............................39
圖4-3 微影製程之流程示意圖................................42
圖4-4 濺鍍系統內部示意圖..................................44
圖4-5 成長奈米柱之試片擺放示意圖..........................45
圖4-6 S參數示意圖.........................................48
圖4-7 元件量測架構簡易示意圖..............................49
圖5-1 厚度1.2μm氧化鋅薄膜沉積於石英基板之SEM俯視圖.......52
圖5-2 厚度1.2μm氧化鋅薄膜沉積於石英基板之SEM剖面圖.......52
圖5-3 厚度1.2μm氧化鋅薄膜沉積於鈮酸鋰基板之SEM俯視圖.....53
圖5-4 厚度1.2μm氧化鋅薄膜沉積於鈮酸鋰基板之SEM剖面圖.....53
圖5-5 厚度1.2μm氧化鋅薄膜沉積於石英基板之AFM表面形貌.....54
圖5-6 厚度1.2μm氧化鋅薄膜沉積於鈮酸鋰基板之AFM表面形貌...54
圖5-7 不同基板間1.2μm氧化鋅薄膜之PL比較圖................55
圖5-8 不同基板間1.2μm氧化鋅薄膜之XRD比較圖...............55
圖5-9 靶材氧化鋅材料之粉末XRD比較圖.......................56
圖5-10 (O2/Ar)=(20/0)氧化鋅薄膜之AFM表面形貌..............57
圖5-11 (O2/Ar)=(18/2)氧化鋅薄膜之AFM表面形貌..............57
圖5-12 (O2/Ar)=(8/12)氧化鋅薄膜之AFM表面形貌..............58
圖5-13 (O2/Ar)=(2/18)氧化鋅薄膜之AFM表面形貌..............58
圖5-14 (O2/Ar)=(20/2)氧化鋅薄膜之AFM表面形貌..............59
圖5-15 不同分壓比下濺鍍氧化鋅薄膜之鍍率及RMS比較圖........60
圖5-16 氧化鋅奈米柱之成長示意圖...........................61
圖5-17 氧化鋅膜厚度70nm,溶液濃度1:1之奈米柱俯視圖........63
圖5-18 氧化鋅膜厚度70nm,溶液濃度1:1之奈米柱剖面圖........63
圖5-19 氧化鋅膜厚度0.7μm,溶液濃度1:1之奈米柱俯視圖......64
圖5-20 氧化鋅膜厚度0.7μm,溶液濃度1:1之奈米柱剖面圖......64
圖5-21 氧化鋅膜厚度1.2μm,溶液濃度1:1之奈米柱剖面圖......65
圖5-22 氧化鋅膜厚度1.2μm,溶液濃度1:1之奈米柱剖面圖......65
圖5-23 氧化鋅膜厚度2μm,溶液濃度1:1之奈米柱俯視圖........66
圖5-24 氧化鋅膜厚度2μm,溶液濃度1:1之奈米柱剖面圖........66
圖5-25 不同薄膜厚度成長奈米柱之PL比較.....................67
圖5-26 薄膜分壓比(O2/Ar)=(0/20),溶液濃度2:1奈米柱俯視圖..68
圖5-27 薄膜分壓比(O2/Ar)=(20/0),溶液濃度2:1奈米柱剖面圖..68
圖5-28 薄膜分壓比(O2/Ar)=(18/2),溶液濃度2:1奈米柱俯視圖..69
圖5-29 薄膜分壓比(O2/Ar)=(18/2),溶液濃度2:1奈米柱剖面圖..69
圖5-30 薄膜分壓比(O2/Ar)=(8/12),溶液濃度2:1奈米柱俯視圖..70
圖5-31 薄膜分壓比(O2/Ar)=(8/12),溶液濃度2:1奈米柱剖面圖..70
圖5-32 薄膜分壓比(O2/Ar)=(2/18),溶液濃度2:1奈米柱俯視圖..71
圖5-33 薄膜分壓比(O2/Ar)=(2/18),溶液濃度2:1奈米柱剖面圖..71
圖5-34 薄膜分壓比(O2/Ar)=(0/20),溶液濃度2:1奈米柱俯視圖..72
圖5-35 薄膜分壓比(O2/Ar)=(0/20),溶液濃度2:1奈米柱剖面圖..72
圖5-36 不同分壓比種晶層之氧化鋅XRD比較圖..................73
圖5-37 石英基板溶液濃度1:10,成長3小時之奈米柱俯視圖......75
圖5-38 石英基板溶液濃度1:10,成長3小時之奈米柱剖面圖......75
圖5-39 石英基板溶液濃度1:10,成長6小時之奈米柱俯視圖......76
圖5-40 石英基板溶液濃度1:10,成長6小時之奈米柱剖面圖......76
圖5-41 石英基板溶液濃度1:10,成長12小時之奈米柱俯視圖.....77
圖5-42 石英基板溶液濃度1:10,成長12小時之奈米柱剖面圖.....77
圖5-43 鈮酸鋰基板溶液濃度1:10,成長3小時之奈米柱俯視圖....78
圖5-44 鈮酸鋰基板溶液濃度1:10,成長3小時之奈米柱剖面圖....78
圖5-45 鈮酸鋰基板溶液濃度1:10,成長6小時之奈米柱俯視圖....79
圖5-46 鈮酸鋰基板溶液濃度1:10,成長6小時之奈米柱剖面圖....79
圖5-47 鈮酸鋰基板溶液濃度1:10,成長12小時之奈米柱俯視圖...80
圖5-48 鈮酸鋰基板溶液濃度1:10,成長12小時之奈米柱俯視圖...80
圖5-49 石英基板不同成長時間之氧化鋅薄膜與奈米柱XRD比較圖..81
圖5-50 鈮酸鋰基板不同成長時間之氧化鋅薄膜與奈米柱XRD比較圖........................................................81
圖5-51 石英基板成長不同時間奈米柱之PL比較圖...............82
圖5-52 鈮酸鋰基板成長不同時間奈米柱之PL比較圖.............82
圖6-1 表面聲波紫外光檢測器結構示意圖......................83
圖6-2 線寬10μm,鋁電極轉90°石英基板元件之S21頻率響應.....86
圖6-3 線寬10μm,鋁電極64°Y-X鈮酸鋰基板元件之S21頻率響應..87
圖6-4 線寬10μm,金/鈦電極64°Y-Z鈮酸鋰基板元件之S21頻率響應.......................................................88
圖6-5 線寬5μm,鋁電極轉90°石英基板元件之S21頻率響應......89
圖6-6 線寬5μm,鋁電極64°Y-X鈮酸鋰基板元件之S21頻率響應...90
圖6-7 線寬5μm,鋁電極64°Y-Z鈮酸鋰基板元件之S21頻率響應...91
圖6-8 線寬5μm,金/鈦電極64°Y-X鈮酸鋰基板元件之S21頻率響應........................................................92
圖6-9 線寬5μm,金/鈦電極64°Y-Z鈮酸鋰基板元件之S21頻率響應........................................................93
圖6-10 元件受紫外線照射時S21頻率響應變化示意圖............96
圖6-11 石英基板鋁電極線寬10μm,元件照射UV-365nm之S21-IL變........................................................98
圖6-12 石英基板鋁電極線寬10μm,元件照射UV-365nm之相位變化........................................................98
圖6-13 石英基板鋁電極線寬10μm,元件照射UV-254nm之S21-IL變化........................................................99
圖6-14 石英基板鋁電極線寬10μm,元件照射UV-254nm之相位變化........................................................99
圖6-15 石英基板鋁電極線寬5μm,元件照射UV-365nm之S21-IL變化.......................................................100
圖6-16 石英基板鋁電極線寬5μm,元件照射UV-365nm之相位變化.......................................................100
圖6-17 石英基板鋁電極線寬5μm,元件照射UV-254nm之S21-IL變化.......................................................101
圖6-18 石英基板鋁電極線寬5μm,元件照射UV-254nm之相位變化.......................................................101
圖6-19 64° Y-X鈮酸鋰10μm鋁電極,元件照射UV-365nm之S21-IL變化.......................................................104
圖6-20 64° Y-X鈮酸鋰10μm鋁電極,元件照射UV-365nm之相位變.......................................................104
圖6-21 64° Y-X鈮酸鋰10μm鋁電極,元件照射UV-254nm之S21-IL變化.......................................................105
圖6-22 64° Y-X鈮酸鋰10μm鋁電極,元件照射UV-254nm之相位變化.......................................................105
圖6-23 64° Y-X鈮酸鋰10μm金電極,元件照射UV-365nm之S21-IL變化.......................................................106
圖6-24 64° Y-X鈮酸鋰10μm金電極,元件照射UV-365nm之相位變化.......................................................106
圖6-25 64° Y-X鈮酸鋰10μm金電極,元件照射UV-254nm之S21-IL變化.......................................................107
圖6-26 64° Y-X鈮酸鋰10μm金電極,元件照射UV-254nm之相位變化.......................................................107
圖6-27 64° Y-X鈮酸鋰5μm鋁電極,元件照射UV-365nm之S21-IL變.......................................................108
圖6-28 64° Y-X鈮酸鋰5μm鋁電極,元件照射UV-365nm之相位變化.......................................................108
圖6-29 64° Y-X鈮酸鋰5μm鋁電極,元件照射UV-254nm之S21-IL變化.......................................................109
圖6-30 64° Y-X鈮酸鋰5μm鋁電極,元件照射UV-254nm之相位變化.......................................................109
圖6-31 64° Y-Z鈮酸鋰5μm鋁電極,元件照射UV-365nm之S21-IL變化.......................................................110
圖6-32 64° Y-Z鈮酸鋰5μm鋁電極,元件照射UV-365nm之相位變化.......................................................110
圖6-33 64° Y-Z鈮酸鋰5μm鋁電極,元件照射UV-254nm之S21-IL變化.......................................................111
圖6-34 64° Y-Z鈮酸鋰5μm鋁電極,元件照射UV-254nm之相位變化.......................................................111
圖6-35 64° Y-X鈮酸鋰5μm金電極,元件照射UV-365nm之S21-IL變化.......................................................112
圖6-36 64° Y-X鈮酸鋰5μm金電極,元件照射UV-365nm之相位變化.......................................................112
圖6-37 64° Y-X鈮酸鋰5μm金電極,元件照射UV-254nm之S21-IL變化.......................................................113
圖6-38 64° Y-X鈮酸鋰5μm金電極,元件照射UV-254nm之相位變化.......................................................113
圖6-39 64° Y-Z鈮酸鋰5μm金電極,元件照射UV-365nm之S21-IL變化.......................................................114
圖6-40 64° Y-Z鈮酸鋰5μm金電極,元件照射UV-365nm之相位變化.......................................................114
圖6-41 64° Y-Z鈮酸鋰5μm金電極,元件照射UV-254nm之S21-IL變化.......................................................115
圖6-42 64° Y-Z鈮酸鋰5μm金電極,元件照射UV-254nm之相位變化.......................................................115
圖6-43 鈮酸鋰基板5μm鋁電極,元件之I-V特性曲線...........121
圖6-44 鈮酸鋰5μm鋁電極,元件照射UV-365nm之電阻變化......122
圖6-45 鈮酸鋰5μm鋁電極,元件照射UV-254nm之電阻變化......122
參考文獻
[1] M. Razeghi, “Short-wavelength solar-blind detectors-status, prospects, andmarkets”, Proc. IEEE, vol. 90, p1006-1014, 2002.
[2] X. Q. Bao, W. Burkhard, V. V. Varadan, V. K.Varadan, ”SAW Temperature Sensor and Remote Reading System”, IEEE 1987 Ultrasonics Symposium, p583- 586, 1987.
[3] Y. R. Roh, H. B. Kim, Y. J. Lee, H. M. Cho, J. S. Chung, S. Baik, “Development of SAW gas sensor for monitoring SOX gas”, Ultrasonics Symposium, 1995. Proceedings., 1995 IEEE, vol. 1, p473-476, 1995.
[4] S.-J. Jian and S.-Y. Chu, T.-Y. Huang, W. Water, “Study of preferred orientation of zinc oxide films on the 64° LiNbO3 substrates and their applications as liquid sensors”, J. Vac. Sci. Technol., vol. 22, p2424-2430, 2004.
[5] W. Water , S.E. Chen, “Using ZnO nanorods to enhance sensitivity of liquid sensor”, Sensors and Actuators B, vol. 136, p371-375, 2009.
[6] S. Ballandras, R. Lardat, L. Penavaire, P. Menage, L. Chommeloux, H. Huet, C. Lestrat, T. Pastureaud, F. Haon, W. Steichen, G. Heider, “P1I-5 Micro-Machined, All Quartz Package, Passive Wireless SAW Pressure and Temperature Sensor”, Ultrasonics Symposium, 2006. IEEE, p1441-1444, 2006.
[7] K. L¨ange , S. Grimm, M. Rapp, “Chemical modification of parylene C coatings for SAW biosensors”, Sensors and Actuators B, vol. 125, p441–446, 2007.
[8] M. Penza, G. Cassano, P. Aversa, F. Antolini, A. Cusano, A. Cutolo, M. Giordano, L. Nicolais, “Recognition of organic solvents molecules by simultaneous detection using SAW oscillator sensors and optical fiber devices coated by Langmuir-Blodgett cadmium arachidate films”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, ,vol. 53, p1493-1502, 2006.
[9] J. W. S. Rayleigh, “On waves propagating along the plane surface of an elastic solid”, In: Proc. London Math. Soc, vol. 17, p4-11, 1887.
[10] R. M. White, F. W. Voltmer, “Direct Piezoelectric Coupling to Surface Elastic Waves”, Applied Phys. Letter, vol. 7, p314-316, 1965.
[11] R. H. Tancrell and M. G. Holland, “Acoustic Surface Wave Filters,” Proc. IEEE,Vol. 59, p393-409, 1971.
[12] C. S. Hartmann, D. T. Bell, JR. and R. C. Rosenfeld, “Impulse response model design of acoustic surface-wave filters,” IEEE Trans. On Microwave Theory and Techniques, vol. MTT-21, p162-175, 1973.
[13] B. P. Abbott, C. S. Hartmann and D. C. Malocha, “A Coupling-of-Modes
Analysis of Chirped Transducers Containing Reflective Electrode Geometries”, IEEE Ultrason. Symp., p129-134, 1989.
[14] B. P. Abbott, “A Coupling-of-Modes Model for SAW Transducers with
Arbitrary Reflectivity Weighting”, the Department of Electrical Engineering at the University of Central Florida Orlando, Florida, 1989.
[15] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, “ZnO Schottky ultraviolet photodetectors”, Journal of Crystal Growth, vol. 225, p110-113, 2001.
[16] D. Basak, G. Amin, B. Mallik, G. K. Paul, S. K. Sen, “Photoconductive UV detectors on sol–gel-synthesized ZnO films”, Journal of Crystal Growth, vol. 256, p73-77, 2003.
[17] X. G. Zheng, Q. Sh. Li, J. P. Zhao, D. Chen, B. Zhao, Y. J. Yang, L. Ch. Zhang, “Photoconductive ultraviolet detectors based on ZnO films”, Applied Surface Science, vol. 253, p2264-2267, 2006.
[18] K. W. Li, J. G. Ma, J. Y. Zhang, Y. M. Lu, D. Y. Jiang, B. H. Li, D. X. Zhao, Z. Z. Zhang, B. Yao, D. Z. Shen, “Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film”, Solid-State Electronics, vol. 51, p757-761, 2007.
[19] T. H. Moon, M. C. Jeong, W. Lee, J. M. Myoung, “The fabrication and characterization of ZnO UV detector”, Applied Surface Science, vol. 240, p280-285, 2005.
[20] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, H. Hosono, “UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors p-NiO/n-ZnO”, Thin Solid Films, vol. 445, p371-372, 2003.
[21] S. J. Young, L.W. Ji, S. J. Chang, Y. K. Su, “ZnO metal-semiconductor-metal ultraviolet sensors with various contact electrodes”, Journal of Crystal Growth, vol. 293, July 15, p43-47, 2006.
[22] S. J. Young, L.W. Ji, T. H. Fang, S. J. Chang, Y. K. Su, X. L. Du, “ZnO ultraviolet photodiodes with Pd contact electrodes”, Acta Materialia, vol. 55, p329-333, 2007.
[23] E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita, E. Manea, “Silicon metal-semiconductor–metal photodetector with zinc oxide transparent conducting electrodes”, Thin Solid Films, vol. 516, p1629-1633, 2008.
[24] K. A. Ingebrigtsen, “Linear and Nonlinear Attenuation of Acoustic Surface Waves in a Piezoelectric Coated with a Semiconducting Film”, J. Appl. Phys., vol. 41, p454-459 , 1970.
[25] A. Wixforth, J. Scriba, M. Wassermeier, J. P. Kotthaus, G. Weimann, W. Schlapp, “Surface acoustic waves on GaAs/AlxGa1-xAs heterostructures”, Phys. Rev. B, vol. 40, p7874-7887, 1989.
[26] S. J. Martin, And A. J. Ricco, 1989 Ultrasoncs Symmposium Proc.; IEEE, New York, p621-625, 1989.
[27] P. Sharma, A. Mansingh, and K. Sreenivas, “Ultraviolet photoresponse of porous ZnO thin films prepared by unbalanced magnetron sputtering,” Appl. Phys. Lett., vol. 80, p553-555, 2002.
[28]P. Sharma, K. Sreenivas, “Highly sensitive ultraviolet detector based on ZnO/LiNbO3 hybrid surface acoustic wave filter”, Appl. Phys. Lett., vol. 83, p3617-3619, 2003.
[29] N. W. Emanetoglu, J. Zhu, Y. C., J. Zhong, Y. Chen, Y. Lu, “Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire”, Appl. Phys. Lett., vol. 85, p3702-3704, 2004.
[30] S. Kumar, P. Sharma, K Sreenivas, “Low-intensity ultraviolet light detector using a surface acoustic wave oscillator based on ZnO/LiNbO3 bilayer structure”, Semiconductor Science and Technology, vol. 20, p27-30, 2005.
[31] L. P. Schuler, M. M. Alkaisi, P. Miller, R. J. Reeves, “UV sensing using surface acoustic wave device on DC sputtered ZnO monolayer”, Microelectronic Engineering, vol. 83, p1403-1406, 2006.
[32] S. Kumar, G. H. Kim, K. Sreenivas, R. P. Tandon, “ZnO based surface acoustic wave ultraviolet photo sensor”, Journal of Electroceramics, vol. 22, p198-202, 2009.
[33] S. S. Lo, D. Huang, C. H. Tu, C. H. Hou and C. C. Chen, “Raman scattering and band-gap variations of Al-doped ZnO nanoparticles synthesized by a chemical colloid process”, J. Phys. D: Appl. Phys, 42, p095420, 2009.
[34] D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing”, materialstoday, p34-40, 2004.
[35] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrution, S. J. Cho, H. S. Morko, “A comprehensive review of ZnO materials and devices”, Journal of Applied Physics, vol. 98, p041301, 2005.
[36] R. Triboulet, J. Perriere, “Epitaxial growth of ZnO films”, Prog. Cryst. Growth Charact. Mater.,vol. 47, p65-138, 2003.
[37] Z. D. Fu, Y. S. Cui, S. Y. Zhang, J. Chen, D. P. Yu, and S. L. Zhang, L. Niu and J. Z. Jiang, “Study on the quantum confinement effect on ultraviolet photoluminescence of crystalline ZnO nanoparticles with nearly uniform size”, Appl. Phys. Lett. vol.90, p263113, 2007.
[38] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds”, Nano Lett, p1231-1236, 2005.
[39] B. S. Kang and S. J. Pearton, F. Ren, “Hydrogen-selective sensing at room temperature with ZnO nanorods”, Appl. Phys. Lett., vol, 86, p243503, 2005.
[40] W. Wang, B. Zeng, J. Yang, B. Poudel, J. Huang, M. J. Naughton, and Z. Ren, “Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission”, Adv. Mater., vol. 18, p3275-3278, 2006.
[41] J. H. Park, H. J. Choi, Y. J. Choi, S. H. Sohn and J. G. Park, “Ultrawide ZnO nanosheets”, Mater. Chem., vol. 14, p35-36, 2004.
[42] A. Wei and X. W. Sun , C. X. Xu , Z. L. Dong, “Stable field emission from hydrothermally grown ZnO nanotubes”, Appl. Phys. Lett. vol. 88, p213102, 2006.
[43] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, vol. 292, p1897-1899, 2001.
[44] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. J. Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties”, Advanced Functional Materials, vol. 12, p323-331, 2002.
[45] S. C. Lyu , Y. Zhang, H. Ruh, J. H. Lee, H. W. Shim, E. K. Suh , C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chemical Physics Letters, vol. 363, p134-138, 2002.
[46] S. Y. Li, C. Y. Lee, T. Y. Tseng, “Copper-catalY-Zed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process”, Journal of Crystal Growth, vol. 247, p357-362, 2003.
[47] H. J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, M. Zacharias, “Well-ordered ZnO arrays on GaN substrates fabricated via nanosphere lithography and mask transfer techniques”, J. Cryst. Growth, v287, January 18, (2006), p 34-38.
[48] S. N. Cha, J. E. Jang, Y. Chio, G. A. J. Amaratunga, “High performance ZnO nanowire field effect transistor using self-aligned nanogap gate electrodes “, Appl. Phys. Lett., vol. 89, p263102, 2006.
[49] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, p1897-1899, 2001.
[50] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater., vol. 13, p113-116, 2001.
[51] B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation”, Appl. Phys. Lett., vol. 81, p757, 2002.
[52] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G.
Somorjai, P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds”, Nano Lett., 5(7), p1231–1236, 2005.
[53] B. Liu, H. C. Zeng, “Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm”, J. Am. Chem. Soc., 125(15), p4430-4431, 2003.
[54] M. Guo, P. Diao, S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions”, J. Solid State Chem., vol. 178, p1864-1873, 2005.
[55] C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, S. T. Lee, ” High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays”, Adv. Mater., vol. 15, p838-841, 2003.
[56] W. I. Park, Y. H. Jun, S. W. Jung, G. C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett., vol. 82, p964-966, 2003.
[57] A. B. Djuri i , Y. H. Leung, “Optical Properties of ZnO Nanostructures”, small, vol. 2, p944-961, 2006.
[58] P. Curie, J. Curie, Comput. Rend, Acad. Sci Paris 91, p294-297, 1880.
[59] D. S. Ballantine, R. M. White, “Acoustic Wave Sensors-Theory, Design and Physico-Chemical Applications”, Academic Press, New York, 1997.
[60] W. Water , Y. S. Yan , T. H. Meen, “Effect of magnesium doping on the structural and piezoelectric properties of sputtered ZnO thin film”, Sensors and Actuators A, vol. 144, p105-108, 2008.
[61] S. J. Martin, A. J. Ricco, T, M, Niemczyk, G. C. Frye, Sensors and Actuatora, vol. 20, p253-268, 1989.
[62] W. R. Grove, Trans. Roy. Soc. (London), 142, p87, 1852.
[63] J.A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, J.Vac. Sci. Technol. vol. 11, p666-670, 1974.
[64] S. Deki, and Y. Aoi, “Synthesis of metal oxide thin films by liquid-phasedeposition method”, J. Mater., vol. 13, p883-890, 1998.
[65] R. A. Laudise and A. A. Ballman, “Hydrothermal Synthesis of Zinc Oxide And Zinc Sulfide”, J. Phys. Chem., 64(5), p688-691 ,1960.
[66] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals”, J. Crystal Growth. vol. 203, p186-196, 1999.
[67] Y. Tong, Y. Liu, L. Dong, D. Zhao, Ji. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique”, J. Phys. Chem. B, 110(41), p20263-20267, 2006.
[68] O. Lupan, L. Chow, G. Chai, L. Chernyak, O. L. Tirpak, and H. Heinrich, “Focused-ion-beam fabrication of ZnO nanorod-based UV photodetector using the in-situ lift-out technique”, p hys. stat. sol. (a), vol. 205, No. 11, p2673–2678, 2008.
[69] J. H. He, P. H. Chang, C. Y. Chen and K. T. Tsai, “Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt”, Nanotechnology, vol. 20, p135701, 2009.
[70] C. K. Campbell, "Surface Acoustic Wave Devices for Mobile and Wireless Communications", John Wiley & Sons, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊