跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江凱威
研究生(外文):Kai-Wei Jiang
論文名稱:適應性感測網路節能路由演算法
論文名稱(外文):Adaptive Energy-Preservation Routing Algorithm for Wireless Sensor Networks
指導教授:林易泉林易泉引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:71
中文關鍵詞:無線感測網路PEGASIS省能路由
外文關鍵詞:Wireless Sensor NetworkPEGASISEnergy Efficient RoutingEnergy Saving
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們利用拓撲分群的叢集式架構來收集感測資料並提出一種具環境適應性的路由拓撲建構方式。傳送距離是影響感測器能量消耗的主要因素,然而在一般環境中會影響節能效率的變數包含了基地台位置、叢集數量、叢集大小、路由建構方式等因素。為了使感測節點縮短彼此之間的傳送距離,達到減少能量花費、延長網路生命週期的目的,我們在環境適應性的考量因素包含了基地台位置對拓撲分群的影響與分群型態對建構資料路由的影響。在我們所提出的方法中,基地台可以具適應性地對網路佈建區做適當的拓撲分群,並根據環境分布利用向量投影的方式來決定路由拓撲分群,使面對各總不同環境時,皆能發揮最佳的節能效益。此外我們亦提出了兩種叢集首選擇機制,使其在面對不同大小叢集的環境下亦能夠縮短叢集首之間的傳送距離。根據模擬實驗的結果,我們所提出的路由演算法與現有的方法相比,其省能效益有明顯的提升,此外其節能效率在面對環境變化的情況下具有較高的適應性。
In this thesis, we use concentric clustering scheme for gathering sensory data and propose an adaptive approach to construct the data routing which can shorten the transmission distance between nodes in a sensor network. Although transmission distance is a major factor that affects the energy consumption of sensor nodes, the energy consumption is also affected by various environment conditions such as the location of base station, the number of clusters, cluster size and routing construction approach. In order to prolong the lifetime of wireless sensor networks, the consideration of adaptability on environment conditions such as the influence of the location of base station on concentric clustering and the cluster type on data routing is addressed in the thesis. We use vector projection approach to construct the network topology which can maintain a consistent status for concentric clustering. With this approach, the base station can adaptively to divide the network into several appropriate clusters and shorten the transmission distance between nodes according to the change of environment conditions. Besides, we propose two selection rules of cluster head which can shorten the transmission distance between cluster heads and provide the rotation feature when confront with different environments. By simulation results, the proposed method can perform better than other similar protocols and provide a high adaptability feature in terms of energy savings.
摘要....................i
Abstract....................ii
Acknowledgement....................iii
Chapter 1 Introduction....................1
1.1 Background....................1
1.2 Motivation and Objective....................2
1.3 Organize of the Thesis....................3
Chapter 2 Related Works....................4
2.1 Introduction to Wireless Sensor Networks....................4
2.2 The Routing Protocol in Wireless Sensor Networks....................7
2.2.1 The Event/Query-Driven Based Routing Protocol....................8
2.2.2 The Time-Driven Based Routing Protocol....................12
Chapter 3 The Proposed Algorithm....................17
3.1 Impact of the Location of Base station and Data Routing....................18
3.2 The Cluster Head Selection Rule....................22
3.3 BFP: Boundary First PEGASIS....................28
3.4 The Protocol operation....................46
Chapter 4 Simulation Result and Discussion....................57
4.1 System model and Simulation Environment....................57
4.2 Relation between the Location of Base station and network topology....................59
4.3 The Performance of BFP....................61
4.4 Using adaptable Cluster Head Selection Rules....................64
Chapter 5 Conclusion and Future Research....................67
Reference....................68
[1]A. Efrat, S. Har-Peled and J.S.B. Mitchell, “Approximation algorithms for two optimal location problems in sensor networks,” 2005 2nd International Conference on Broadband Networks, vol. 1, October 2005, pp.714-723
[2]A. Wang, W. R. Heinzelman, and A. P. Chandrakasan, “Energy- Scalable Protocols for Battery-Operated MicroSensor Networks,” Proceedings of IEEE Workshop on Signal Processing Systems, October 1999, pp. 483-492.
[3]B. Krishanamachari, D. Estrin and S. Wicker, “The Impact of Data Aggregation in Wireless Sensor Networks,” Proceedings of the 22nd International Conference on Distributed Computing Systems, July 2002, pp.575-578.
[4]C. Intanagonwiwat, D. Estrin, R. Govindan and J. Heidemann, “Impact of Network Density on Data Aggregation in Wireless Sensor Networks,” Proceedings of the 22nd International Conference on Distributed Computing Systems, July 2002, pp.457-458.
[5]C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed Diffusion for Wireless Sensor Networking,” IEEE/ACM Transcation on Networking, vol. 11 no. 1, February 2003, pp. 2-16.
[6]D. Braginsky, D. Estrin, “Rumor routing algorithm for sensor networks,” Proceedings of the First ACM International Workshop on Wireless Sensor Networks and Applications, October 2002, pp. 22-31.
[7]E. Fasolo, M. Rossi, J. Widmer and M. Zorzi, “In-network aggregation techniques for wireless sensor networks: a survey,” IEEE Wireless Communications, vol. 14, April 2007, pp.70-87.
[8]F. Ye, H. Luo, J. Cheng, S. Lu and L. Zhang , ”A Two-Tier Data Dissemination Model for Large-Scale Wireless Sensor Networks,” Proceedings of the Eighth Annual ACM/IEEE International Conference on Mobile Computing and Networking, September 2002, pp.148-159.
[9]I.F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, “A Survey on Sensor Networks,” IEEE Communications Magazine, vol. 40 no. 8, August 2002, pp.102-114.
[10]J. N. Al-Karaki, A. E. Kamal, “Routing Techniques in Wireless Sensor Networks: A Survey,” IEEE Wireless Communications, vol. 11 no. 6, December 2004, pp.6-28.
[11]J. Sung-Min, H. Young-Ju and C. Tai-Myoung, “The Concentric Clustering Scheme for Efficient Energy Consumption in the PEGASIS,” The ninth International Conference on Advanced Communication Technology, vol. 1, February 2007, pp.260-265.
[12]K. Akkaya, M. Younis, and M. Youssef, “Positioning of Base Stations in Wireless Sensor Networks,” IEEE Communications Magazine, vol. 45, April .2007, pp.96-102.
[13]K. Holger, A. Willig, Protocols and Architectures for Wireless Sensor Networks, Chichester, England: Wiley, 2005.
[14]K. Romer, F. Mattern, “The Design Space of Wireless Sensor Networks,” IEEE Wireless Communication, vol. 11 no. 6, December 2004, pp.54-61.
[15]L. Chuan-Ming, L. Chuan-Hsiu and W. Li-Chun, “Distributed Clustering Algorithms for Data-gathering in Wireless Mobile Sensor Networks,” Journal of Parallel and Distributed Computing, vol. 67 no. 11, November 2007, pp.1187-1120.
[16]Mengjie Yu, H. Mokhtar and M. Merabti, “Fault management in wireless sensor networks,” IEEE Wireless Communications, vol. 14, December .2007, pp.13-19.
[17]N. Tabassum, Q. Ehsanul, K. Mamun and Y. Urano, “COSEN: A Chain Oriented Sensor Network for Efficient Data Collection,” Third International Conference on Information Technology: New Generations (ITNG 2006), April 2006, pp.262 -267.
[18]Qiu Wanzhi, M. Pham and E. Skafidas, “Routing and localization for extended lifetime in data collection wireless sensor networks,” Third International Conference on Communications and Networking, August 2008 ,pp. 1373-1378
[19]Shih-I Huang, “Introduction to Mathematical Approaches for Data Aggregation in Wireless Sensor Networks,” ICL TECHNICAL JOURNAL, March 2007, pp.57-62.
[20]S. Hedetniemi, A. Liestman, “A Survey of Gossiping and Broadcasting in Communication Networks,” Networks, vol. 18 no. 4, 1988, pp. 319-349.
[21]S. Lindsey, C. S. Raghavendra, “PEGASIS: Power-Efficient Gathering in Sensor Information System,” IEEE Aerospace Conference Proceedings 2002, vol. 3, 2002, pp.1125-1130.
[22]S. Lindsey, C. S. Raghavendra, and K. M. Sivalingam, “Data Gathering Algorithms in Sensor Networks Using Energy Metrics,” IEEE Transactions. Parallel and Distributed Systems, vol. 13, no. 9, September .2000, pp.924-935.
[23]Shiwen Mao and Y. R. Hou, “BeamStar: An Edge-Based Approach to Routing in Wireless Sensor Networks,” IEEE Transactions. Mobile Computing, vol. 6, November 2007, pp.1284-1296.
[24]Shiwen Mao, Y. R. Hou and Min-You Wu, “Exploiting edge capability for wireless sensor networking,” IEEE Wireless Communications, vol. 15, August .2008, pp.377-381.
[25]S. Tilak, Nael B. Abu-Ghazaleh and W. Heinzelman, “A Taxonomy of Wireless Micro-sensor Network Models,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 6 no. 2, April 2002, pp.28-36.
[26]S. Mahfoudh and P. Minet, “Survey of Energy Efficient Strategies in Wireless Ad Hoc and Sensor Networks,” IEEE Seventh International Conference on Networking, April 2008, pp.1-7.
[27]W. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive Protocols for Information Dissemination in Wireless Sensor Networks,” Proceedings of the Fifth ACM/IEEE International Conference on Mobile Computing and Networking, August 1999, pp. 174-185.
[28]W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-efficient Communication Protocol for Wireless Microsensor Networks,” IEEE Proceedings of the Annual Hawaii International Conference on System Sciences, January 2000, pp.1-10.
[29]曾煜棋、潘孟鉉、林致宇,無線區域及個人網路:隨意及感測器網路之技術與應用, 知城圖書, 2006 年12月
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top