跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 11:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉家瑋
研究生(外文):Chun-Wei Liu
論文名稱:以塗佈法製作銅鎵硫硒(CGSS)光伏電池材料之特性研究
論文名稱(外文):Preparation of CGSS PV materials by metallic ink coating processes
指導教授:楊立中楊立中引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:71
中文關鍵詞:銅鎵硫硒塗佈法太陽電池球磨次微米漿料非真空
外文關鍵詞:CGSSprintingsolar cellball millingsub-micron inknon-vacuum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用球磨法製備次微米銅鎵硫硒(CuGaSeS,CGSS)漿料,以塗佈法將CGSS漿料塗佈於鈉玻璃基板上形成CGSS前驅層,再置於RTP爐管中進行高溫快速退火製程,使之形成具黃銅礦(Chalcopyrite)結構特性之薄膜;本實驗的高溫快速退火製程是在不通入硒蒸氣與與硒化氫氣體的前提下,利用高溫擴散使CGSS形成黃銅礦結構並分析其特性。
本實驗所製作之前驅層為Cu-Se化合物顆粒與Ga-S化合物顆粒之薄膜;從實驗過程中可發現CGSS晶粒尺寸會隨著熱處理溫度(400 ~ 650℃)的升高而成長,在500℃之後開始出現CGSS(112)特徵面;CGSS在高溫與長時間熱處理下會出現Cu-O與Cu-S化合物,Cu-S通常出現在CGSS晶粒表面與晶界,而Cu-O應為RTP腔體內中殘留的O2與CGSS薄膜反應所生成。
由本實驗可得知,CGSS的熱處理時間不需要太長,並且可在不通入硒氣體的條件下於熱處理溫度650℃、持溫10分鐘形成具黃銅礦結構之CGSS薄膜。
This experiment was prepared using ball milling of copper gallium selenium sulfur (CuGaSeS, CGSS) sub-micron ink, to deposit thin layers of CGSS particles on sodium glass substrates using simple non-vacuum techniques, than put it in RTA tube to proceed Rapid Thermal Processing(RTP), and form Chalcopyrite thin film; This experiment process is without Se vapor and H2Se, the CGSS precursors diffusion of high temperature forms Chalcopyrite structure and to analyses its characteristics.
The precursor layer is Cu-Se compound particles and Ga-S compound particles mixture; We discover that the grain size increases as temperature increases, the thin films have CGSS (112) preferred orientation when the themperature at 500oC; however, the thin films appear such oxides as Cu-O compound and Cu-S compound under thermal treatment of high temperature and long time, Cu-S compound usually found in CGSS surface and grain boundary, this remaining oxygen reacts with thin films in RTA tube.
The RTP time of CGSS thin film is not need too long, we receive a result that thermal treatment of 650oC/10 min is the best parameter under environment of without Se vapor and H2Se.
中文摘要………………………………………………………………i
英文摘要………………………………………………………………ii
誌謝……………………………………………………………………iii
總目錄…………………………………………………………………iv
圖目錄…………………………………………………………………vii
表目錄…………………………………………………………………ix
第一章 簡介…………………………………………………………1
1.1前言 ………………………………………………………………1
1.2薄膜太陽電池之類型 ……………………………………………3
1.2.1非晶矽薄膜型太陽電池 ………………………………………5
1.2.2非晶矽/微晶矽堆疊薄膜型太陽電池…………………………5
1.2.3碲化鎘薄膜型太陽電池 ………………………………………5
1.2.4CIGS薄膜型太陽電池 …………………………………………5
1.3CIGS薄膜製程方法 ………………………………………………8
1.3.1蒸鍍法 …………………………………………………………8
1.3.2硒化法 …………………………………………………………9
1.3.3印刷塗佈法 ……………………………………………………10
1.4研究目的 …………………………………………………………10
第二章 理論基礎 ……………………………………………………17
2.1太陽電池工作原理 ………………………………………………17
2.2球磨粉碎 …………………………………………………………19
2.2.1球磨機粉碎原理 ………………………………………………19
2.2.2影響球磨粉碎效果的因素 ……………………………………21
2.3粉末分散原理 ……………………………………………………22
2.3.1超音波分散法 …………………………………………………22
2.3.2化學分散法 ……………………………………………………23
2.4熱輻射原理 ………………………………………………………24
第三章 實驗方法與設備 ……………………………………………30
3.1實驗方法與步驟 …………………………………………………30
3.2製程設備 …………………………………………………………31
3.2.1粉末製造相關設備 ……………………………………………31
3.2.2熱處理系統 ……………………………………………………31
3.3分析設備及技術原理 ……………………………………………32
3.3.1X光繞射儀 ……………………………………………………32
3.3.2掃描式電子顯微鏡 ……………………………………………33
3.3.3能量散佈光譜儀 ………………………………………………36
3.3.4粉末粒度分析儀 ………………………………………………36
第四章 實驗結果與討論 ……………………………………………50
4.1銅鎵硫硒粒度分析 ………………………………………………50
4.2銅鎵硫硒顯微結構分析 …………………………………………50
4.3銅鎵硫硒薄膜成分分析 …………………………………………51
4.4結晶特性分析 ……………………………………………………52
第五章 結論 …………………………………………………………65
參考文獻 ……………………………………………………………67
[1]http://www.tri.org.tw/unfccc/index.htm
[2]施敏,“半導體元件物理與製作技術”,國立交通大學出版社,p.478-479(2007)
[3]http://www.e-tonsolar.com/edu.htm#5
[4]陳麒麟,“矽薄膜太陽電池發展契機”,前瞻太陽能光電科技研討會
[5]Yoshihiro Hamakawa, “Thin-Film Solar Cells”, Springer-Verlag Berlin Heidelberg, p.107
[6]陳文照、曾春風、游信和,“材料科學與工程導論”,高立圖書有限公司,p.39-71(2002)
[7]Yoshihiro Hamakawa, “Thin-Film Solar Cells”, Springer-Verlag Berlin Heidelberg, p.124(2004)
[8]劉勝隆,摻雜鈉與硫對太陽電池材料銅銦硒與鉬薄膜之影響與研究,國立虎尾科技大學光電材料工程所論文,p.51(2008)
[9]Jun Young Choi, Kang-Jin Kim, Ji-Beom Yoo, Donghwan Kim, “Properties of cadmium sulfide thin films deposited by chemical bath deposition with ultrsonication”, Solar Energy Vol. 64 Nos 1-3, pp.41-47 (1988)
[10]何政樺,由CBD法沉積硫化鎘及硫化鋅緩衝層及其對銅銦鎵硒薄膜太陽電池的影響,國立虎尾科技大學材料科學與綠色能源工程所論文,p.18(2008)
[11]R. N. Bhattacharya, M. A. Contreras, B. Egaas, R. N. Noufi, “High efficiency thin-film CuIn1-xGaxSe2 photovoltaic cells ising a Cd1-xZnxS buffer layer”, Applied Physics Letters 89, 253503 (2006)
[12]In-Hwan Choi, Peter Y. Yu, “Preparation of CuInSe2/CuGaSe2 two layers absorber film by metal-organic chemical vapor deposition”, Current Applied Physics 9 151-154 (2009)
[13]Shogo Ishizuka, Hajime Shibata, Akimasa Yamada, Paul Fons, Keiichiro Sakurai, Koji Matsubara, and Shigeru Niki, “Growth of polycrystalline Cu(In,Ga)Se2 thin films using a radio frequency-cracked Se-radical beam source and application for photovoltaic devices”, Applied physics Letters 91, 041902 (2007)
[14]G. Norsworthy, C.R. Leidholm, A. Halani, V.K. Kapur, R. Roe, B.M. Basol, R. Matson, “CIS film growth by metallic ink coating and selenization”, Solar Energy Materials & Solar Cells 60 127-134 (2000)
[15]Sakka Y., Nakano K. and Hirga K. J. Am. Ceram. Soc., 84: 2132~2134 (2001)
[16]Colic M., Franks G. and FisherM., et al. J. Am. Ceram. Soc., 81 (8): 2157~2163 (1998)
[17]Pugh R. J., Bergstrom L. eds. Surface and Colloid Chemistry in Advanced Ceramics Processing. Surfactant Science Series, Vol. 51. Marcel Dekker Inc. (1994)
[18]邱丞美、陶金華,“儀器分析原理”,紅葉彩色印刷有限公司,p.182-215(1987)
[19]陳力俊,“材料電子顯微鏡學”,行政院國科會精密儀器發展中心,p.297-311(1990)
[20]“User’s Manual”, Metek Process & Analytical Instruments (2003)
[21]Chris Eberspacher, Karen Pauls and Jack Serra, “Non-vacuum processing of CIGS solar cells.”.
[22]C. Eberspacher, C. Fredric, K. Pauls and J. Serra, “Thin-film CIGS PV modules fabricated using simple, non-vacuum techniques”, EC-PVSEC (2000)
[23]Charis Eberspacher, Chris Fredric, Karen Pauls and Jack Serra, “Thin-film CIS alloy PV materials fabricated using non-vacuum, particles-based techniques”, Thin Solid Films (2001)
[24]T. Wada, Y. Matsuo, S. Nomura, Y.Nakamura, A. Miyamura, Y. Chiba, A. Yamada, amd M. Konagai, “Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen-printing/sintering processes”, Phys. (2006)
[25]M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg, A.N. Tiwari, “CIS and CIGS layers from selenized nanoparticle precursors”, Thin solid films (2003)
[26]M.S. Branch, P.R. Berndt, J.R. Botha, A.W.R. Leitch, J. Weber, “Structure and morphology of CuGaS2 thin films”, Thin Solid Films 431-432 (2003)
[27]M. Kaelin, D. Rudmann, A.N. Tiwari, “Low cost processing of CIGS thin film solar cells”, Solar energy (2004)
[28]H. Jitsukawa, H. Matsushita, T. Takizawa, “Phase diagrams of the (Cu2Se, CuSe)-CuGaSe2 system and the crystal growth of CuGaSe2 by the solution method”, Journal of Crystal Growth 186 587-593 (1998)
[29]M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg, A.N. Tiwari, “CIS and CIGS layers from selenized nanoparticle precursors”, Thin solid films (2003)
[30]M. Klenk, O. Schenker, E. Bucher, “Photoluminescence and X-ray fluorescence measurements of successively thinned CuGaSe2 films”, Thin solid films (2000)
[31]Jovana Djordjevic, Eveline Rudigier and Roland Scheer, “In-Situ XRD Studies of Sequential CuIn(Se,S)2 Formation”, Material Research Society (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊