跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 05:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖士運
研究生(外文):Shih-Yun Liao
論文名稱:光伏太陽能電池材料銅鎵二硒(CuGaSe2)薄膜之製備及其特性分析研究
論文名稱(外文):Preparation and Characterization of chalcopyrite CuGaSe2 polycrystalline thin films for the photovoltaic solar cells materials
指導教授:楊立中楊立中引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:105
中文關鍵詞:光伏元件太陽電池銅鎵二硒前驅層黃銅礦。
外文關鍵詞:Photovoltaic DevicesSolar CellsCuGaSe2PrecursorChalcopyrite.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:468
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
銅銦鎵硒(Cu(In,Ga)Se2,CIGS)在薄膜太陽能電池的發展中佔有極重要的地位,在Mo/CIGS/CdS/ZnO 電池結構中,使用銅鎵二硒(CuGaSe2)薄膜做為吸收層疊層覆蓋在CIGS上,而使得CuGaSe2 薄膜在電池效率的增進上,扮演重要的角色。
我們提出一種以球磨法(Ball Milling)製備成前驅物(precursor)漿料,再將CuGaSe2漿料塗佈於矽基板上製成薄膜的方法,所用的前驅物包括Cu2Se 與Ga2Se3,針對這兩種前驅物的成分可以獨立調整,以獲得不同的Cu/Ga 比。再置於RTA爐管內進行快速退火製程,利用溫度(300-800℃)的變化使其形成黃銅礦(Chalcopyrite)結構之薄膜。
本實驗所製備出來的前驅層CuGaSe2薄膜,從Cu/Ga比將薄膜分為Cu-rich與Cu-poor兩種類型;所生長的CuGaSe2 薄膜以X 光繞射法(X-ray Diffraction, XRD)加以分析,結果顯示晶體結構為黃銅礦(Chalcopyrite)結構。藉此CIS/CIGS 薄膜的能隙,可藉著添加鎵(Ga)成分條件的不同,可從1.04 eV 到1.68 eV 之間加以調整,此技術未來可使用於堆疊式CGS/CIGS 太陽能電池,並可能將光電轉換效率提昇至25%以上。
在本論文中,我們發展了新的方法製備CuGaSe2/CIGS 薄膜,由本實驗之結果可得到,熱處理時間不需太長,且在不須加入硒蒸氣與硒化氫氣体下,於加熱溫度650℃、持溫10分鐘即可得到具有黃銅礦特性之CuGaSe2薄膜。因此,對於製作CuGaSe2/CIGS 薄膜太陽能電池及相關的元件,均可使用球磨及塗佈方法,開發單一製程技術,以降低製程轉換之影響,達到增進元件產量、品質與效能的目的。
Copper indium gallium selenide (CuIn(1-x)GaxSe2, CIGS) has attracted much attentions for its applications in thin film solar cells. Copper gallium selenide (CuGaSe2) thin film has been used in Mo/CGS/CIS/CdS/ZnO solar cell fabrication as a absorber layer and it plays an important role in improving efficiency.
We propose a method to prepare CuGaSe2 films by using mechanical milling to form a paste or an ink which is suitable for coating on silicon substrates in the form of a thin precursor layer with dual-source precursors, Cu2Se and Ga2Se3. Composition control, or the control of the Cu/Ga metallic mol ratio is an important concern in chalcopyrite film growth. Subsequently, these precursor layers were annealed in a argon atmosphere at a temperature range from 300 to 800℃ for 10 min. Heat treatment steps were used to convert the powdery precursor layers into solar-cell-grade chalcopyrite absorbers.
The Cu2Se and Ga2Se3 are the precursors which are deposited form this experimentation and distinguish thin films between Cu-rich and Cu-poor by Cu/Ga ratio. The structure of CuGaSe2/CIGS films was determined by XRD. It
is found that the films are at single chalcopyrite phase. The optical bandgap of CIS/CIGS films could be adjusted from 1.04 eV to 1.68 eV by changing the growth conditions. Therefore, the tandem cell of CIGS-based solar cells can be fabricated by using this technique and may improve the conversion efficiency over 25% in the future.
In this work, we demonstrate new techniques of growing CuGaSe2 and CIGS films. In our study, Cu2Se and Ga2Se3 powders were mixed with precursor pastes and precursor layers were selenized in a argon atmosphere. No toxic gases were used and produced during the whole testing process. Chalcopyrite CuGaSe2 was formed at 650℃/10 min and the crystalline of this phase was improved as temperature rises. Thus, the development of CIGS-based solar cells and related devices can easily be achieved by using Ball Milling/Printing technique with a single in-line process.
中文摘要 ………………………………………………………… I

英文摘要 ………………………………………………………… II

致謝 ………………………………………………………… III

總目錄 ………………………………………………………… IV

圖目錄 ………………………………………………………… VII

表目錄 ………………………………………………………… XI

第一章 緒論……………………………………………………… 1
1.1前言…………………………………………………………… 1
1.2 銅鎵二硒(CuGaSe2)背景…………………………… 4
1.3 銅鎵二硒(CuGaSe2)的製程方法…………………… 5
1.4 研究動機與目的……………………………………… 6
第二章 理論基礎與文獻回顧 …………………………………………… 13
2.1 太陽能電池工作原理………………………………… 13
2.2 太陽能電池之能量轉換效率與填充因數(Fill factor)……… 15
2.3 I-III-VI族化合物薄膜太陽電池 ………………… 16
2.3.1 化合物半導體太陽能電池…………………………… 17
2.3.2 CdTe太陽能電池…………………………………… 17
2.3.3 銅銦硒(CIS)太陽能電池………………………… 18
2.4 球磨粉碎之製程……………………………………… 26
2.4-1 球磨粉碎原理…………………………………… 26
2.4-2 影響球磨粉碎效果的因素………………………… 28
2.5 超細粉體之分散原理………………………………… 29
2.5-1 機械分散法……………………………………… 29
2.5-2 超音波分散法……………………………………… 30
2.5-3 化學分散法……………………………………… 31
2.6 RTP快速退火之熱輻射原理………………………… 32
2.7 塗佈技術之應用……………………………………… 35
2.7-1 工業上常用的塗佈方式……………………………… 36
2.8 粒徑的測定方法及其原理…………………………… 37
2.9 光激螢光(PL)原理簡介……………………………… 39
第三章 實驗步驟與分析方法 …………………………………………… 52
3.1 製程…………………………………………………… 52
3.2 實驗方法與步驟……………………………………… 52
3.3 實驗設備………………………………………… 55
3.3.1 次微米超細粉末製造相關設備…………………… 55
3.3.2 快速退火熱處理系統…………………………… 55
3.4 分析設備……………………………………………… 56
3.4.1 X光繞射儀(X-Ray diffraction,XRD)………… 56
3.4.2 掃瞄式電子顯微鏡…………………………… 57
3.4.3 能量散佈光譜儀…………………………… 59
3.4.4 穿透式電子顯微鏡…………………………… 59
3.4.5 PL 光激發光光譜分析儀……………………… 62
3.4.6 表面輪廓儀………………………………… 63
3.4.7 四點探針…………………………………… 63
3.4.8 粉體粒徑分析儀…………………………………… 65
第四章 結果與討論 …………………………………………… 78
4.1 粉體粒徑與薄膜成分分析…………………………… 78
4.2 顯微結構分析………………………………………… 79
4.3 結晶特性分析………………………………………… 81
4.4 薄膜之PL特性分析…………………………………… 83
第五章 結論 ………………………………………………………… 100
參考文獻 ………………………………………………………… 101
1. J. L. Shay and J. H. Wernick, “Ternary Chalcopyrite Semiconductor: Growth, Electronic Properities, and Applications”, Pergamon Press, New York, (1975).
2. A. Rockett, F. Abouelfotouh, D. Albin, M. Bode, J. Ermer, R. Klenk, T. Lommasson, T. W. F. Russel, R. D. Tomlinson, J. Tuttle, L. Stolt, T. Walter and T. M. Peterson, Thin Solid Films, 237, p.1, (1994).
3. G. D. Boyd, H. M. Kasper, J. H. Mcfee and F. G. Storz, IEEE J. Quantum Electr., QE-8, p.900, (1972).
4. J. Tuttle, D. Albin, J. Goral, C. Kennedy and R. Noufi, Solar Cells, 24, 67, (1988).
5. J. C. Mikkelsen, J. Electronic Material, 10, 541, (1981).
6. V. Swaminathan and A. T. Macrander, “Materials Aspects of GaAs and InP Based Structure”, Prentice Hall, Englewood Cliffs, New Jersey, (1991).
7. H. Neumann and R. D. Tamlinson, Solar Cell, 28, 301, (1990).
8. H. Asai and K. Sugiyama, J. Appl. Phys., 20, p.1401, (1981).
9. S. Chichibu, Y. Harada, M. Uchide, T. Wakiyama, S. Matsumoto, S. Shirakata, S. Isomura and H. Higuchi, J. Appl. Phys., 76, p.3009, (1994).
10. O. Igarashi, J. Crystal Growth, 143, p.213, (1994).
11. S. Shirkata, K. Morita and S. Tsomura, Jpn. Appl. Phys., 33, p.L739, (1994).
12. 劉博文,「半導體元件物理」, Chapter 11, 高立, 民國95年2月。
13. 李源弘、雷永泉,「新能源材料」,天津大學出版社。
14. 黃瑜, “CIGS太陽電池技術與展望”, 工研院產業學院, 民國96 年8 月 16 日。
15. S. Zweigart, D. Schmid, J. Kessler, H. Dittrich and H. W. Schock, “Studies of the growth-mechanism of polycrystalline CuInSe2 thin-films prepared by a sequential progress”, J. Cryst. Growth, 146, pp. 233-238 (1995).
16. A. Rockett, et al., “Na incorporation in Mo and CuInSe2 from production processes”, Solar energy materials and solar cells, 59, pp. 255-264, (1999).
17. R. Kimura, T. Nakada and P. Fons, “Photoluminescence properties of sodium incorporation in CuInSe2 and Cu1In3Se5 thin films”, Solar energy materials and solar cells, 67, pp. 289-295, (2001).
18. D. Braunger, et al., “Influence of sodium on the growth of polycrystalline Cu(in,Ga)Se2 thin films”, Thin Solid Films, 361, pp. 161-166, (2000).
19. J. Holz, F. Karg and H. von Philipsborn, “Proceedings of the 12th European Photovoltaic Solar Energy Conference”, Ampsterdam, p. 1592, (1994).
20. M. Ruckh, D. Schmid, M. Kaiser, R. Schaffler, T. Walter and H. W. Schock, “Proceedings of the 1st World Conference on Photovoltaic 35 Energy Conversion”, IEEE, New York, p. 156, (1994).
21. 謝秀琴、戴賢輝、謝世豪, “TFT-LCD 無鹼玻璃基板材料介紹”, 化工所產資組。
22. J. R. Tuttle, M. Contreras, M. H. Bode, D. Niles, D. S. Albin, R. Matson, A. M. Gabor , A. Tennant, A. Duda and R. Noufi, J. Appl. Phys., 77, 153, (1995).
23. R. Chakrabarti, A. B. Maity, R. Pal, D. Bhattacharyya, S. Chaudhuri and A. K. Pal, Phys. Stat. Sol., (a)160, 67, (1997).
24. D. Hamemamm, Crit, Rev. Solid State Mater. Sci., 14, p. 377, (1988).
25. D. Schmid, M. Ruckh, F. Crunwald and J. W. Schock, J. Appl. Phys., 73, p.2902, (1993).
26. F. J. Pern, R. Noufi, A. Mason and A. Franz, Thin Solid Films, 202, p. 299, (1991).
27. R. W. Birkmire, L. C. Dinetta, P. G. Lasswell, J. D. Meakin and J. E. Phillips, Solar Cells, 16, p.419, (1986).
28. B. M. Basol, V. K. Kapur and R. C. Kullberg, Solar Cells, 27, p.299, (1989).
29. K. W. Mitchell, G. A. Pollack and A. V. Mason, “Proceedings of the 20th Institute of Electrical and Electronics Engineers Photovoltaic Specialists Conference”, (Institute of Electrical and Electronics Engineers, New York, 1988), p.1578.
30. L. C. Yang and A. Rocket, J. Appl. Phys., 75(2), p.1185, (1994).
31. R. J. Matson et al., Mater. Res. Soc. Symp. Proc., 426, 183, (1996).
32. R. Noufi, M. Romero and et al., “CIGS thin film growth model”, NCPV review Meeting, March(2003).
33. R. Noufi, M. Romero and et al., “CIGS thin film growth model”, NCPV review Meeting, March(2003)
34. C. H. Hung, S. S. Li Rieth, A. Halani, IEEE, pp. 696-699, (2000).
35. J. Kessler, K. O. Velthaus, M. Ruckh, R. Laichinger, H. W. Schock, D. Lincot, R. Ortega and J. Vedei, 6th Photovoltaic Science and Engineering Conference Proceedings, New Delhi, India, pp.1005-1010, (1992).
36. K. Ramanathan, R. N. Bhattacharya, J. Granata, J. Webb, D. Niles, M. A. Contreras, H. Wiesner, F. S. Hasoon and R. Noufi, Conference record of the 26th IEEE PVSC, p.319, (1997).
37. W. Eisele, A. Ennaoul, P. Schubert-Bischoff, IEEE, pp.692-69, (2000).
38. G. Gordillo, G. Cediel, L. M. Caicedo, H. Infante and J. Sandino, IEEE, pp.614-617, (2001).
39. K. Yoshino, T. Hata, T. Kakeno, H. Komaki, M. Yoneta, Y. Akaki and T. Ikari, Phys. Stat. Sol. (c) 0, No. 2, 626-630, (2003).
40. 李鳳生, 「超細粉體技術」,國防工業出版社, pp. 54-56, (2000)。
41. Colic M., Franks G. and Fisher M., et al. J. Am. Ceram. Soc., 81 (8), pp.2157-2163. , (1998).
42. Pugh R. J., Bergstrom L. eds. Surface and Colloid Chemistry in Advanced Ceramics Processing. Surfactant Science Series, Vol. 51. Marcel Dekker Inc., (1994).
43. Cohen, E. D. and E. B. Gutoff, “Modern Coating and Drying Teachnology”, VCH Publishers, New York, (1992).
44. 劉大佼,「高分子加工原理與應用」,國立編譯館,pp. 398-412, (1997)。
45. S. H. You, K. J. Hong, T. S. Jeong, and C. J. Youn, J. Crystal Growth, 2717, 310, (2008).
46. B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction” (3rd ed), Prentice Hall, New Jersey(2001) pp. 170.
47. Klug. P and Alexander. L. E. “X-ray Diffraction Procedure” (New York:Wiley) Ch9, (1954).
48. 陳力俊,「材料電子顯微鏡學」,行政院國科會精密儀器發展中心,pp.297-311, (1990)。
49. “User’s Manual”, Metek Process & Analytical Instruments (2003).
50. Chris Eberspacher, Karen Pauls and Jack Serra, “Non-vacuum processing of CIGS solar cells”, IEEE, pp. 684-687, (2002).
51. C. Eberspacher, C. Fredric, K. Pauls and J. Serra, “Thin-film CIS alloy PV materials fabricated using non-vacuum, particles-based techniques”, EC-PVSEC, 387, pp. 18-22, (2001).
52. M. Kaelin, D. Rudmann, A.N. Tiwari, “Low cost processing of CIGS thin film solar cells”, Solar energy, 77, pp. 749-756, (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊