跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 15:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊麒翰
研究生(外文):Chi-Hang Yung
論文名稱:矽奈米柱/單晶矽基異質接面太陽能電池之研製
論文名稱(外文):Study of Silicon Nanorods/Crystalline Silicon Heterojunction Solar Cells
指導教授:鄭錦隆
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:氣液固相法奈米材料硝酸銀蝕刻太陽能電池
外文關鍵詞:Vapor-liquid-solidnanomaterialsAgNO3 etchingsolar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:446
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用氣液固法(Vapor-Liquid-Solid)搭配金催化劑成長矽奈米柱(silicon nanorods, SNRs)於單晶矽基板上,藉由改變不同的SiH4及N2沈積流量、成長時間及溫度等條件,成長高品質矽奈米柱並應用於太陽能電池元件之射極層及抗反射層。其中搭配SiOx抗反射層改善矽奈米柱/單晶矽基異質接面太陽能電池之轉換效率、開路電壓、短路電流及填充因子等特性,經由多種參數調配量測結果,於通入SiH4:N2=25:100 (sccm),成長60分鐘所得到之效率值為最高,電池結構為Al/N+-SiNRs/I-type SiNRs/I-type poly-Si/P-type Si其效率為1.9%。
另外為增加P-N接面面積,採用硝酸銀混合濕式蝕刻液獲得矽奈米線(Silicon nanowires , SNWs),並應用於太陽能電池之吸收層,藉由P-N接面面積的增加,改善矽奈米線太陽能電池特性。藉由改變不同的蝕刻深度、擴散時間及溫度,發現於蝕刻深度660 nm、擴散時間3 hr及擴散溫度950 oC之情況下可得到效率為最高,其電池結構為Al/N+-SNWs/P-type SNWs/P-type Si,其效率為4.41%,並在沈積SiNx抗反射層後更提升到5.5%。
In this thesis, the vapor-liquid-solid technique was adopted to develop the silicon nanorods (SNRs) as the emitter and the absorber layer of solar cells. By modulated the various ambient flow, growth temperature and time, the SNRs can be achieved for the silicon heterojunction solar cell devices applications. The enhanced properties of solar cells with SiNx as anti-reflection coating (ARC), including conversion efficiency, open-circuit voltage, short-circuit current, and fill factor, were demonstrated. According to the optimization of these process conditions, the efficiency of the Al/N+-SNRs/I-type SNRs/I-type poly-Si/ P-type Si structured thin-film solar cells with SiH4:N2=25:100 (sccm) and deposition time of 60 min, can be achieved around 1.9%.
To increase the area of the p-type Si/n-type Si junction, the SNWs were obtained using the mixed AgNO3/HF solution wet etching method. By modulated the etching depth, diffusion time and temperature, the conversion efficiency (CE) of the Al/N+-SNWs/I-type SNWs/I-type poly-Si/P-type Si structured solar cell can be achieved around 4.41%. The process conditions include etching depth of 660nm, diffusion time of 3hr, and diffusion temperature of 950oC. Furthermore, the CE of the Al/N+-SNWs/I-type SNWs/I-type poly-Si/P-type Si structured solar cell with SiNx as ARC can be increased to 5.5%.
摘要………………………………………………………….……………i
Abstract…………………………………………………….…………….ii
誌謝……………………………………………………….…………….iii
目錄……………………………………………………………………..iv
圖目錄……………………………………………….………………..viii
第一章 序論………………………………………………………….….1
1.1 前言 (Introduction)………………………………………..……1
1.2 成長奈米結構於太陽能電池的發展及益處…………….…….1
1.3 Vapor-Liquid-Solid 機制……….………………………………3
1.4 研究動機………………………………………………….…….5
1.5 論文架構………………………………………………….…….5
第二章 元件製程與量測………………………………………....……..7
2.1 奈米柱當作太陽能電池之抗反射結構製程…………….….....7
2.1.1 P-N結構太陽能電池………………………...………..7
2.1.1.1 RCA(Radio Corporation of America)………..……7
2.1.1.2 沈積試片背面二氧化矽(SiO2)保護層……………8
2.1.1.3 氫氧化鉀(KOH)濕蝕刻……………………..….....8
2.1.1.4 參雜擴散製程…………………………………......8
2.1.1.5 Buffer Oxide etch(BOE)蝕刻二氧化矽………......8
2.1.1.6 上下部電極之覆蓋……………………..…………9
2.1.2 P-I-N結構太陽能電池…………………………..……..9
2.1.2.1 RCA(Radio Corporation of America)………….....9
2.1.2.2 沈積試片背面二氧化矽(SiO2)保護層……….......9
2.1.2.3 氫氧化鉀(KOH)濕蝕刻………………………....10
2.1.2.4 沈積多晶矽薄膜…………………………...……10
2.1.2.5 參雜擴散製程………………………………...…10
2.1.2.6 反應式離子蝕刻乾蝕刻背面多晶矽薄膜…..….11
2.1.2.7 Buffer Oxide Etch(BOE)蝕刻二氧化矽………...11
2.1.2.8 上下部電極之覆蓋……………………………...11
2.1.2.9 沈積抗反射層氮化矽…………………………...11
2.1.3 P-I-N結構太陽能電池……………………………...…12
2.1.3.1 Buffer Oxide Etch(BOE)蝕刻二氧化矽………...12
2.1.3.2 沈積試片正背面二氧化矽(SiO2)保護層……….12
2.1.3.3 Catalyst deposition………………………………12
2.1.3.4 Pre-treatment與混成矽奈米結構之成長……….13
2.1.3.5 反應式離子蝕刻蝕刻背面多晶矽薄膜與正面奈米柱……………………………………………...13
2.1.3.6 Buffer Oxide Etch(BOE)蝕刻二氧化矽………...13
2.1.3.7 上下部電極之覆蓋……………………………...14
2.2 奈米柱/單晶矽異質接面太陽能電池……………………….14
2.2.1 RCA(Radio Corporation of America) clean…..……....14
2.2.2 沈積試片背面二氧化矽(SiO2)保護層……………….14
2.2.3 氫氧化鉀(KOH)濕蝕刻……………………………...15
2.2.4 沈積多晶矽薄膜……………………………………..15
2.2.5 Catalyst deposition…………………………..………..15
2.2.6 Pre-treatment與混成矽奈米結構之成長……………15
2.2.7 參雜擴散製程……………………………….………..16
2.2.8 反應式離子蝕刻蝕刻背面多晶矽薄膜……………...16
2.2.9 高溫氧化爐管成長抗反射結構……………………...16
2.2.10 光阻塗佈…………………………………….………..16
2.2.11 圖案曝光………………………………….…………..16
2.2.12 Buffer Oxide Etch(BOE)蝕刻二氧化矽……………...17
2.2.13 上下部電極之覆蓋…………………………………...17
2.3 直立式陣列矽奈米線(SiNWs)太陽能電池…………………17
2.3.1 RCA (Radio Corporation of America) clean………….17
2.3.2 光阻塗佈保護………………………………………...18
2.3.3 硝酸銀(AgNO3)混合液蝕刻矽奈米線………………18
2.3.4 參雜擴散製程………………………………………...18
2.3.5 Buffer Oxide Etch(BOE)蝕刻二氧化矽……………...18
2.3.6 上下部電極之覆蓋……………….…………………..18
2.3.7 沈積抗反射層氮化矽…………….…………………..19
2.4 電性量測…………………………………..…………………19
2.4.1 效率特性量測…………………….………………….19
2.4.2 外部量子效率(EQE)量測……………………………19
2.4.3 四點探針量測………………………………………...20
2.5 材料物性量測……………………………..…………………20
2.5.1 掃瞄式電子顯微鏡(SEM:Scanning Electron Microscope)………………………………………...…20
2.5.2 微拉曼及微光激發光譜儀(Micro-Raman &Micro-PL Spectroment )…………………………….………...…21
2.5.3 UV-VIS-IR 光譜儀(Spectrometer)…………………..21
2.5.4 能量散佈光譜儀(Energy Dispersive Spectroscopy;EDS)…………………………………...22
2.5.5 薄膜測厚儀(n&k analyzer)………….……………….22
第三章 矽奈米柱當作太陽能電池之抗反射層結構….……………...28
3.1 研究動機與實驗製程…………………………………………28
3.2 結果與討論……………………………………………………28
3.3 結論……………………………………...…………………….31
第四章 異質接面矽奈米柱太陽能電池................................................45
4.1 研究動機與實驗製程…………………………………………45
4.2 結果與討論……………….…………………………………...45
4.3 結論………………………..…...……………………………...50
第五章 直立式陣列奈米線太陽能電池......................................……..67
5.1 研究動機與實驗製程………………………………………....67
5.2 結果與討論…………………………………………………....67
5.3 結論…………………………………………………………....70
第六章 結論與未來展望……………………….……………………...84
6.1 結論………….………………………………………………...84
6.2 未來展望…………….………………………………………...85
參考文獻………………………………………………………….….....86
作者簡歷………………………………………………………..............89
英文大綱
[1] T. Surek, J. Crystal Growth 275, 292 (2005), and DOE “Basic Research Needs for Solar Energy Utilization” (2005)
[2] Martin A. Green et al., Prog. Photovolt: Res. Appl., pp.61-67, 2008.
[3] B. M. Kayes et al., APL 91, 103110 (2007).
[4] T. Stelzner et al.,Nanotechnology 19 (2008) 295203.
[5] L. Hu et al., Nano Letters 7 (2008) 3249.
[6] L. Tsakalakos et al., APL 91, 233117 (2007).
[7] B. Tian et al., Nature 449, pp. 885-890 (2007).
[8] Erik C. Garnett., JACs VOL. 130, NO. 29, 2008 9225 .
[9] Gary Goncher et al., JEN Vol. 3, No. 1, March 2008, 77–86 .
[10] Michael D et al., Nano Letters 2008 Vol.8 NO.2 710-714 .
[11] Thomas J. Kempa et al., Nano Letters 2008 Vol.8 NO.10 3456-3460 .
[12] Y. B. Tang et al., Nano Letters 2008 Vol.8 NO.12 4191-4195 .
[13] Jia Zhu et al., Nano Letters 2009 Vol.9 NO.1 278-282 .
[14] Yanzhao Cheng ., APL 102, 083516 (2007) .
[15] Kuiqing Peng ., APL 92, 163103 2008 .
[16] 太陽能學報vol.27, No.8 Aug., 2006
[17] Nano Letters 2009 Vol.9 NO.4 1549-1554 V. Sivakov et al.
[18]E. I. Givargizov, “Fundamental aspects of VLS growth “ J Crystal growth, 31, 20, 1975
[19]K.H. Lee, Y.K. Fang and S.H. Fan, “Au metal induced lateral cyrstallisation of hydrogenated amorphous silicon temperature and fast MILC rate”, Electronics Lett., 35, 24th June 1999.
[20]Bin Yu, Calebotta, Kenneth Yuan, and Meyya Meyyappan, “Self-assembled nanowire-on-insulator for nano-chip technology”, Proceedings of 2005 5th IEEE Conference on Nanotechnology, Nagoya, Japan, July 2005.
[21]R. S. Wagner, W. C. Ellis, K. A. Jackson, and S. M. Arnold, “Study of the Filamentary Growth of Silicon Crystals from the Vapor”, J. Appl. Phys., 35, 2993, 1964.
[22]Chao-Yu Meng, Jui-Lin Chen and Si-Chen Lee, “The growth and Raman spectra of boron-doped silicon nanowires ”, Proceedings of 2005 5th IEEE Conference on Nanotechnology, Nagoya, Japan, July 2005.
[23]S. Sharma, T.I. Ka mins, M.S. Islam, R. Stanley Williams, A.F. Marshall, “Structural characteristics and connection mechanism of gold-catalyzed bridging slilcon nanowires”, Journal of Crystal Growth, 280, 562, 2005.
[24]MSaif Islam, S Sharma, T I Ka mins and R StanleyWilliams, “Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces”, Nanotechnology, 15, L5, 2004.
[25]Allon I. Hochbaum, Rong Fan, Rongrui He, and Peidong Yang, “Controlled Growth of Si nanowire Arrays for Device Integration”, Nano Lett., 5, 3, 2005.
[26]Patrick Carlberg, Magnus Borgstro1m, Lars Montelius, Werner Seifert, Lars Samuelson, and Thomas Mårtensson, “Nanowire Array Defined By Nanoimprint Lithography”, Nano Lett., 4, 4, 2004.
[27]Jinsub Choi, Guido Sauer, Petra Goring, Kornelius Nielsch, Ralf B. Wehrspohna and Ulrich Gosele, “Monodisperse metal nanowire arrays on Si by integration of template synthesis with technology”, J. Mater. Chem., 13, 1100, 2003.
[28]劉建惟,“第三代太陽能電池”,2006年12月國研院月刊,pp.118-119。
[29] Dengyuan Song et al., Solar Energy Materials & Solar Cells 92 (2008) 474–481
[30] H. Kakinuma, M. Mohri, M. Sakamoto, and T. Tsuruoka, “Structural properties of polycrystalline silicon films prepared at low temperature by plasma chemical vapor deposition”, J. Appl. Phys., 70, 12, 7374, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊