跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/27 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王彥凱
研究生(外文):Yen-Kai Wang
論文名稱:矽酸鋅薄膜製程與光學特性之研究
論文名稱(外文):The Study on the Preparation and Optical Property ofZinc Silicate Thin Film
指導教授:蔡木村
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:94
中文關鍵詞:矽酸鋅溶膠-凝膠法
外文關鍵詞:Zn2SiO4sol-gel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以溶膠-凝膠法製備矽酸鋅(Zn2SiO4)摻雜型螢光薄膜,並探討不同的溶液濃度、摻雜劑、及改變熱處理條件對於矽酸鋅螢光薄膜之結構、結晶性、微結構及發光特性之影響。
分別以金屬無機鹽類及金屬有機化合物為起始材料,並摻雜不同劑量的活化劑,經由溶液的混和、水解、解膠及縮聚合反應製備螢光薄膜。實驗發現,改變水含量、電解質濃度、及摻雜劑種類與濃度,均可形成清澈透明的溶膠與膠體薄膜,且膠化時間隨著水含量、電解質濃度及摻雜劑量的增加而減短。改變水含量、電解質濃度及摻雜劑量對於膠體的熱活化行為、結晶性及分子結構並無明顯之影響。
經乾燥後的膠體薄膜於熱處理800 ℃後,均開始產生α-Zn2SiO4 結晶,且結晶性隨著熱處理溫度的升高而增加。
摻雜的膠體薄膜,其放射波長主要分別位於525 nm (綠光)及403 nm (藍紫光),且隨著摻雜劑量增加,其放射波長有紅移現象產生。而熱處理溫度與摻雜劑量均會顯著影響膠體薄膜的發光強度,且隨著熱處理溫度的增加,及改變熱處理氣氛後,均會明顯影響其發光強度。
In this study, zinc silicate(Zn2SiO4)phosphor thin film were prepared by the sol-gel process. The effects of solution concentration, doped amount, and heat treatment on the phosphor structure, crystallinity, microstructure, as well as luminescent properties of Zn2SiO4 thin films were investigated.
The precursor materials were metal salts and metal organic compound.with various doped amount of activator. The doped zinc silicate phosphor thin films could be prepared by the procedures of mixing, hydrolysis, petization, and condensation reaction. Transparent sols and thin films could be obtained from appropriate concentrations of water, acidic electrolyte and different dopant concentrations. It was observed that water concentration, electrolytes and dopant amounts could remarkable affect the gelation rate of solution. With different amount of water, electrolytes, and dopants, however, the thermal activity,crystalline behaviors, molecular structures as well as the infrared spectra of thin
films did not show significant difference.
The dried thin films began to form the α-Zn2SiO4 crystalline phase after heat-treatment at 800 oC. The crystallinity of the thin films increased as the
firing temperature increase.
The photoluminescence (PL) spectra showed the peak wavelengths of the green and blue-purple emission at 525 nm and 403 nm for doped-Zn2SiO4,respectively. With the increase of doped amounts in Zn2SiO4, the emission peak
has a red shift. Moreover, the heating temperature and dopant amount hadnotable influences on the luminescent intensity of phosphor thin films. With the rise of heating temperature and heating in reduce atmosphere, the luminescent intensity is enhanced significantly.
中文摘要..........................................i
英文摘要……………………….......................іі
誌謝…………………………....................... ііі
目錄.............................................iv
表目錄…………………………………….…….…….....ix
圖目錄……………………………………………….......x
第一章 緒論………………………………...............1
1.1 前言…………………………..………………….…..1
1.2 研究動機………………………..……….……..…..2
1.3 矽酸鋅簡介…………………………..………….....3
1.3.1 Zn2SiO4 晶體結構………………………..……..3
1.3.2 Zn2SiO4 發展與演進…………….…………......3
1.3.3 Zn2SiO4 特性與應用………………………….….4
1.4 陶瓷粉體及薄膜粉體與薄膜之製備方法..........9
1.4.1 物理方法………………………………...……….9
1.4.2 化學方法……………………………..……......10
第二章 理論基礎與文獻回顧…………………………...13
2.1 發光定義…….……………...…………...………..13
2.1.1 光激發光...................................13
2.1.2 電激發光…………….……....…..……..……..13
2.1.3 陰極射線發光…………….……......…..……..15
2.1.4 熱發光…………….……...…..………...……..15
2.1.5 化學發光…………….……...…..…...………..15
2.1.6 磨擦發光…………….……...…..…...………..15
2.1.7 X 光發光…………….……...…..…...………..15
2.2 發光原理………………………………………….…..16
2.2.1 能量轉換機構……………..……………….….….16
2.2.2 史脫克位移…………..………...…………...….17
2.3 螢光材料之簡介……………………………...……..18
2.3.1 ns2 離子發光中心型……..…………………..….18
2.3.2 過渡金屬離子發光中心型…………..…………...19
2.3.3 錯離子型發光中心型....…….……………….….19
2.3.4 稀土離子發光中心……..…........…….….….19
2.3.5 IIA-VIIA 族鹼土鹵化物半導體……….......….19
2.3.6 IIA-VIA 族鹼土硫化物……..…...…….……….20
2.3.7 IIB-VIA 族ZnS 型化合物半導體.....……..…..20
2.3.8 III-V 族化合物半導體………………..………….20
2.4 螢光材料的組成之設計..…………....……..…...21
2.5 影響螢光效率的因素………………………………...22
2.5.1 主體晶格的效應…………………………....…...22
2.5.2 濃度淬滅效應………………………………..…...23
2.5.4螢光體污染………………………………………....23
2.5.5熱消滅………………………………………….…...24
2.6 溶膠-凝膠之製程…………………………….……...24
2.6.1溶膠-凝膠法之反應...……………...……..…...24
2.6.2 溶膠-凝膠法之優缺點………………….………...26
2.7 研究目的………………………...................28
第三章 研究方法與步驟………………………………....34
3.1 製程之實驗流程…………………………..……...…35
3.2 特性分析儀器原理簡介…………………..………...37
3.2.1 結構分析…………………………………....…...37
3.2.1.1 X-光繞射儀 (XRD) ……………………...…...38
3.2.1.2 質差與熱差分析儀 (TG / DSC)…………….….38
3.2.1.3 霍氏轉換紅外光譜儀 (FT-IR)…………..…….39
3.2.1.4 場發射掃描式電子顯微鏡(FE-SEM)…….....39
3.2.1.5 原子力顯微鏡(AFM)………...…………….……39
3.2.3 光電分析……….......……………………..……40
3.2.3.1 霍爾效應量測(Hall effect measuremen)…….40
3.2.3.2 紫外光/可見光/近紅外光分光光度計 (UV-Vis-NIR)…40
3.2.3.3 螢光光譜儀(Fluorescence Spectrophotometer)…41
第四章 結果與討論………………………………………..46
4.1 溶膠-凝膠反應………………………………….…...46
4.2 結構分析………………………………………….....52
4.2.1 XRD 繞射與結晶性分析……………………….…..52
4.2.2 熱重與示差(TG / DSC)分析………………….…59
4.2.3FT-IR 分析………………….…….......……....61
4.3 微結構分析……………….......................64
4.3.1 SEM & FE-SEM………………………………......64
4.3.2 AFM 原子力顯微鏡...........................68
4.4 物性分析.....................................74
4.4.2 α-step 薄膜厚度測量………………………......74
4.5 光電特性分析……………………...……………....76
4.5.1 霍爾效應測量...............................76
4.5.2 透光率分析………………………………….……..78
4.5.3 發光特性分析…………...……………………....80
第五章 結論…………………………………………..…..89
參考文獻……………………………………………..…...90
未來研究方向……………………………………………….94
[1] C. M. Lin, Y. Z. Tsai, J.S. Chen, “The microstructure and cathodoluminescence characteristics of sputtered Zn2SiO4:Ti phosphor thin films”, Thin Solid Films 515 (2007)7994–7999
[2] http://webmineral.com/data/Willemite.shtml
[3] M. A. Sim, P. A. Sand, Y. K. E.Tismenko, N. V. Belov, Sov. Phys.Dok 22(1977)pp.622-623.
[4] E. N. Butting, Phase equilibrium in the system SiO2-ZnO. J. Am. Ceram. Soc. 5(1930)pp.5-10
[5] E. M. Ing, G. W. Mor, O. F. Tut, Am. J. Sci. 246(1948), pp.21-40
[6] P. Atkins, L. Jones, “Chemistry molecules, Matter, and Change”, 3th. ed, 1997
[7] G. Blasse and B.C Grabmaier, “ luminescent Materials”, Springer Verlag, BerlinHeidelberg, Germany, 1994.
[8] S. R. Lukic, D. M. Petrovic, M. D. Dramicanin, M. Mitric, L. Dacanin, “Optical and structural properties of Zn2SiO4:Mn2+ green phosphor nanoparticles obtained by a
polymer-assisted sol–gel method”, Scripta Materialia 58 (2008) 655–65
[9] Z. Peng , C. Luo , J. Yu , Z. Xu , X. Lu , G. Zhang, “Preparation and characterization of an
Hf 4+-doped zinc silicate long-lasting phosphorescent material”, Zhang. Materials Letters 62 (2008) 487–490
[10] V. Natarajan, K. V. R. Murthy, M. L. Jayanth Kumar, “Photoluminescence investigations of Zn2SiO4 co-doped with Eu3+ and Tb3+ ions”, Solid State Communications 134 (2005)
261–264
[11] E. Cavalli, A. Belletti, E. Zannoni, “Luminescence of Fe-Doped Willemite Single
Crystal” Journal of solid stage chemistry 117,16-20(1995)
[12] T. C. Brunold , H. U. Giidel , E. Cavalli, “Absorption and luminescence spectroscopy of
Zn2SiO4 willemite crystals doped with Co 2+”, Chemical Physics Letters 252 (1996)112-120
[13] P. Thiyagarajan, M. Kottaisamy, M. S. Ramachandra Rao, “Structural and luminescence properties of pulsed laser deposited green-emitting Zn2SiO4:Mn phosphor thin films”,
Scripta Materialia 57 (2007) 433–436
[14] J. Yan, Z. Ji , J. Xi, C. Wang, J. Du, S. Zhao, “Fabrication and characterization of
photoluminescent Mn-doped-Zn2SiO4 films deposited on silicon by pulsed laser
deposition”, Thin Solid Films 515 (2006) 1877–1880
[15] J. Wan, X. Chen, Z. Wang, L. Mu, Y. Qian, “One-dimensional rice-like Mn-doped
Zn2SiO4: Preparation, characterization, luminescent properties and its stability”, Journal of Crystal Growth 280 (2005) 239–243
[16] H. X. Zhang, C. H. Kam, Y. Zhou, X. Q. Han, S. Buddhudu, Y. L. Lam, C.Y. Chan,
“Deposition and photoluminescence of sol-gel derived Tb3+: Zn2SiO4 films on SiO2/Si ”, Thin Solid Films 370 (2000) 50-53
[17] B. Yan, H. Huang, “Matrix-inducing synthesis and luminescence of Zn2SiO4:xTb3+ submicrometer phosphors derived from the sol–gel assembling of different
multicomponent hybrid precursors”, Journal of Alloys and Compounds 429 (2007)338–342
[18] H. X. Zhang, S. Buddhudu, C. H. Kam, Y. Zhou, Y. L. Lam, K. S. Wong, B.S. Ooi, S. L.
Ng, W.X. Que, “Luminescence of Eu3+ and Tb3+ doped Zn2SiO4 nanometer powder phosphors”, Materials Chemistry and Physics 68 (2001) 31–35
[19] A. Patra , Gary A. Baker , Sheila N. Baker, “Synthesis and luminescence study of Eu3+ in
Zn2SiO4 nanocrystals”, Optical Materials 27 (2004) 15–20
[20] P. Yang, M. K. Lu , C. F. Song, S. W. Liu, F. Gu, S. F. Wang, “Electronic energy relaxation and luminescence decay dynamics of Eu3+ in Zn2SiO4:Eu3+ phosphors”
Inorganic Chemistry Communications 7 (2004) 268–270
[21] P. Yang , M. K. Lu , C. F. Song , S. W. Liu , D. R. Yuan , D. Xu , F. Gu , D. X. Cao , D.H. Chen, “Preparation and characteristics of sol–gel derived Zn2SiO4 doped with Ni2+ ”,Inorganic Chemistry Communications 5 (2002) 482–486
[22] D. Wang,Q. Yin,Y. Li,M. Wang, J.Electrochem.Soc.149,(3)H65-H67(2002).92
[23] W. R. Blumenthal and D. S.philips,J.Am.Ceram.Soc.79,1047(1996).
[24] http://www.phy.ntnu.edu.tw/demolab/txt/light10.htm
[25]劉如熹,王建源,石景仁,“白光發光二極體之螢光材料介紹”,光訊,第91 期,2001年,8 月,P.30
[26] D. Cai, Y. Su, Y. Chen, J. Jiang, Z. He, L. Chen “Synthesis and photoluminescence
properties of novel SnO2 asterisk-like nanostructures” Materials Letters 59(2005)1984-1988.
[27] B. Henderson, G. F. Imbusch, “Optical Spectroscopy of Inorganic Solids”, Clarendon Oxford (1989).
[28] B. Dibartolo, “Eneray transfer Process in Condensed Matter”, Plenum, New York (1984).
[29] G. Blasse, “Luminescence of inorganic solids:From isolated centres to concentratedsystems”, Prog. Solid State Chem., 18 (1998) P.79.
[30] S. Shionoya. And W. M. Yen, “Phosphor Handbook”, CRC press (1999).
[31] A. Ikesue and I.Furusato,J.Am.Ceram.Soc.78,225(1995)
[32] P. S. Patil, R. K. Kawar, T. Seth, D. P. Amalnerkar, P. S. Chigare “Effect of substrate temperature on structural, electrical and optical properties of sprayed tin oxide (SnO2)
thin films” Ceramics International 29 (2003) 725-734.
[33] A. H. Kitai, “Solid State Luminescence”, Chapman & Hall press, Cambridge (1993).
[34] B. Henderson, G. F. Imbusch, “Optical Spectroscopy of Inorganic Solids”, Clarendon Oxford (1989).
[35]G. Blasse, B. C. Grabmaier,” Luminescence Material”, 1994
[36] P. Atkins, L. Jones, ”Chemistry molecules, Matter, and Change”, 3th.ed, 1997
[37] M.Gomi and Kanie, Jpn. J. Appl.Phys,35,1798(1996)
[38] 張有義郭籃生編著,“膠體與界面化學入門” ,高立圖書工公司,台北市,民國86年
[39] B. Jirhennsons et al, Colloid Chemistry, Mc.Millan Co. New York (1962)
[40]蔡木村, “以化學方法合成透光性MgO 及SiO2 陶瓷粉末之研究” , 國科會研究報告,1996 年, p.11
[41] T. C Hang, Y. T. Wang, Y. S. Hong, Y. S. Chen, J. C. Yang, “Organic–inorganic hybrid materials 7: characterization and degradation of polyvinylimidazole silica hybrids”,Polymer Degradation and Stability 69 (2000) 317-320
[42] V.B. Mikhailik, H. Kraus, M. Balcerzyk, W. Czarnacki, M. Moszynski, M.S.Mykhaylyk, D. Wahl, “Low-temperature spectroscopic and scintillationcharacterisation of
Ti-doped Al2O3” Nuclear Instruments and Methods in Physics Research A 546 (2005)523–534
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top