跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳鈺翔
研究生(外文):Yu-Xiang Chen
論文名稱:鋁酸鋅粉末製程與特性之研究
論文名稱(外文):The Study on the Preparation and Characterization of Zinc Aluminate Powders
指導教授:蔡木村
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:96
中文關鍵詞:鋁酸鋅螢光溶膠-凝膠法
外文關鍵詞:Zinc Aluminatephosphorsol-gel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:539
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究是藉由溶膠-凝膠法來製備鋁酸鋅(ZnAl2O4)螢光體,並探討活化劑量及熱處理條件對其螢光體結構與結晶性、微結構及發光特性之影響。
以金屬無機鹽類及金屬有機化合物為起始材料,並添加不同劑量的活化劑,經溶液之均勻混合、水解、解膠及縮聚合反應製備鋁酸鋅螢光體。實驗發現,可藉由控制其酸性電解質之含量形成清澈透明之溶凝膠,且活化劑劑量對膠化時間有明顯影響。經乾燥後的粉末於300˚C熱處理開始形成鋁酸鋅結晶,結晶性及結晶尺寸隨著熱處理溫度的升高而增加,經熱處理300~1200 ˚C後皆為均質單相之鋁酸鋅尖晶石結構,平均晶粒大小約為10~36 nm。其結晶性與晶粒尺寸均隨熱處理溫度上升而增加,而不同的活化劑劑量對於膠體的結晶性並無明顯之影響。
摻雜M1及M2之螢光體,其放射波長分別位於510 nm之綠光區及650~720 nm之紅光區,共摻雜之螢光體則可藉由選擇適當的激發波長同時於510 nm之綠光區及650~720 nm之紅光區具有一明顯之放射特性。且活化劑劑量與熱處理條件及微結構均會顯著影響膠體的發光強度。
In this study, zinc aluminate phosphor were synthesized by the sol-gel process. The effects of activator amounts and heat-treatments on the structure, crystallinity , microstructure and photoluminescent properties were investigated.
Metal salts and metal alkoxides were used as precursors with various activator amounts. Transparent sols could be obtained by controlling the proper concentrations of acidic electrolyte. The activator amount could influence the gelation time remarkably. The as-prepared gel powders began to form ZnAl2O4 structure after heating at 300 ˚C, which resulted in single-phase ZnAl2O4 after heating up to 1200 ˚C. The average grain sizes were about 10 ~ 34 nm after firing at 300~1200 ˚C. The crystallinity and grain size of gel increased with heating temperatures. Furthermore, activator amount did not remarkably affect the crystallinity of gels.
The photoluminescence (PL) spectra showed the peak wavelengths of green and red emission located at 510 nm and 650~720 nm for M1-doped and M2-doped phosphor, respectively. Both emissions could be observed at the same time for co-doped with M1 and M2. Moreover, the relative PL intensity depended on the activator amount , heat-treatment, and the microstructure of gel.
中文摘要................і
英文摘要...............іі
誌謝..................... ііі
目錄..................... iv
表目錄............. viii
圖目錄..............ix

第一章 緒論..............1
1.1 前言.................1
1.2 研究動機...............2
第二章 基礎理論與文獻回顧...........4
2.1鋁酸鋅簡介................4
2.1.1鋁酸鋅晶體結構................4
2.1.2鋁酸鋅特性與應用.........................4
2.1.3鋁酸鋅粉體及薄膜之製備方法.................. 10
2.1.3.1物理方法.......................10
2.1.3.2化學方法........................10
2.2 螢光材料簡介........................13
2.2.1螢光材料的定義.............13
2.2.2發光原理.......................13
2.2.3發光的能帶理論................14
2.2.4斯托克位移....................15
2.3螢光材料之分類....................16
2.2.1激發源種類之分類...............16
2.2.1發光中心之分類.................17
2.4螢光材料之組成.....................18
2.5影響發光效率之因素...............21
2.5.1主體晶格..................21
2.5.2濃度淬滅效應.............21
2.5.3毒劑效應.................21
2.5.4熱消淬現象..............21
2.6溶膠-凝膠法..................22
2.6.1溶膠-凝膠法基本原理.............22
2.6.2溶膠-凝膠法基本過程...........22
2.6.3 影響溶膠-凝膠過程之因素..........23
2.7 研究目的................24

第三章 實驗方法與步驟.................26
3.1實驗流程......................26
3.2 特性分析儀器原理簡介...........29
3.2.1 X-光繞射儀 (XRD)..............29
3.2.2 霍氏轉換紅外光譜儀 (FT-IR).............29
3.2.3 熱重分析儀(TGA)..................29
3.2.4 熱示差掃描儀(DSC)................30
3.2.5 場發射掃描式電子顯微鏡(FE-SEM)...........30
3.2.6 恆溫吸附儀 (BET)................30
3.2.7 螢光光譜儀(Fluorescence Spectrophotometer).........31
第四章 結果與討論..............35
4.1溶膠-凝膠反應.....................35
4.2結構分析.....................41
4.2.1 X-光繞射分析..............41
4.2.2 FT-IR分析...................52
4.2.3熱重與示差(TG/DSC)分析 ...............56
4.3微結構分析..................58
4.3.1 FE-SEM分析.............58
4.4物性分析................65
4.5 螢光特性分析............69
第五章 結論.............92
未來研究方向................93
參考文獻...................94
[1]郭玉萍,林士凱,蔡子健,“照明器具法規與節能”,工業材料 267(2009)108-109
[2] S. Shionoya, W. M. Yen, H Yamamoto “Phosphor handbook” CRC press, Boca Raton, 2007, p. 7.
[3]張中太,張俊英,“無機光致發光材料與應用”,化學工業 (2005)
[4]R. Hansson, P. C. Hayes, and E. Jak “Experimental Study of Phase Equilibria in the Al-Fe-Zn-O System in Air.” Metallurgical and Materials Transactions B, Volume 35B, 8 (2004) p.633.
[5]A.D. Ballarini, S.A. Bocanegra, A.A. Castro, S.R. de Miguel, O.A. Scelza “Characterization of ZnAl2O4 Obtained by Different Methods and Used as Catalytic Support of Pt” Catal. Lett. 129 (2009)293–302
[6]M. Zawadzki,W. Mista,L. Kepinski “Metal-support effects of platinum supported on zinc aluminate” Vacuum 63 (2001) 291-296
[7]W. Lei, W.Z. Lu, J.H. Zhu, X. Ye “Effects of heating rate on microstructures and microwave dielectric properties of (1-x)ZnAl2O4–xTiO2 (x = 0.21) ceramics” Ceram. Int. 35 (2009) 277–280
[8]H. Loukili, S. Alami-Younssi, A. Albizane, J. Bennazha, M. Bouhria, M. Persin, A. Larbot, “Investigation of performance of a low ZnAl2O4–TiO2 ultrafiltration membrane in relation with speciation and membrane solutes interactions” Sep. Purif. Technol. 59 (2008) 134–140
[9]J. Judith Vijaya, L. John Kennedy, A. Meenakshisundaram,G. Sekaran, K.S. Nagaraja “Humidity sensing characteristics of sol–gel derived Sr(II)-added ZnAl2O4 composites” Sensor Actuat. B xxx (2007) xxx–xxx
[10]N.J. van der Laag, M.D. Snel, P.C.M.M. Magusin, G. de With, “Structural, elastic, thermophysical and dielectric properties of zinc aluminate (ZnAl2O4)” Journal of the European Ceramic Society, 24 (2004) 2417–2424
[11]S.K. Sampath , J.F. Cordaro “Optical Properties of Zinc Aluminate, Zinc Gallate, and Zinc Aluminogallate Spinels” J. Am. Ceram. Soc., 81(1998)649–654
[12]V. Singha, R.P.S. Chakradhar, J.L. Rao, D.K. Kim “Characterization, EPR and luminescence studies of ZnAl2O4:Mn phosphors” J. Lumin. 128 (2008) 394–402
[13]H. Matsui, C.N. Xu, H. Tateyama“Stress-stimulated luminescence from ZnAl2O4:Mn” Appl. Phys. Lett. 78(2001)1068-1070
[14]Z. Lou, J. Hao “Cathodoluminescent characteristics of green-emitting ZnAl2O4:Mn thin-film phosphors” Appl. Phys. A 80(2005)151–154
[15]D.L. Wood,G.F. Imbusch “Optical Spectrum of Cr3+ Ion in spinels” J. Chem. Phys. 48(1968)5255-5263
[16]M. García-Hipólito, J. Guzmán-Mendoza, E. Martínez, O. Alvarez-Fregoso, C. Falcony “Growth and cathodoluminescent characteristics of blue emitting cerium-doped zinc aluminate layers synthesized by spray pyrolysis technique” Phys. Stat. Sol. 201(2004)1510-1517
[17]S.F. Wang, F. Gu, M.K. Lu, X.F. Cheng,W.G. Zou, G.J. Zhou,S.M. Wang, Y.Y. Zhou “Synthesis and photoluminescence characteristics of Dy3+-doped ZnAl2O4 nanocrystals via a combustion process” J. Alloy. Compd. 394 (2005) 255–258
[18]M. Garcıa-Hipolito,C.D. Hernandez-Perez,O. Alvarez-Fregoso,E. Martınez, J. Guzman-Mendoza, C. Falcony “Characterization of europium doped zinc aluminate luminescent coatings synthesized by ultrasonic spray pyrolysis process” Opt. Lett. 22 (2003) 345–351
[19]Z. Lou, J. Hao “Cathodoluminescence of rare-earth-doped zinc aluminate films” Thin Solid Films 450 (2004) 334–340
[20]W. Strek, P. Deren, A. Bednarkiewicz, M. Zawadzki, J. Wrzyszcz “Emission properties of nanostructured Eu3+ doped zinc aluminate spinels” J. Alloy. Compd. 300–301 (2000) 456–458
[21]B.S. Barros,P.S. Melo,R.H.G.A. Kiminami,A.C.F.M. Costa,G.F. de Sa,S. Alves Jr “Photophysical properties of Eu3+ and Tb3+-doped ZnAl2O4 phosphors obtained by combustion reaction” J. Mater. Sci. 41 (2006)4744–4748
[22]A.A. Da Silva,A.D. Goncalves,M.R. Davolos “Characterization of nanosized ZnAl2O4 spinel synthesized by the sol–gel method” J. Sol-Gel Sci. Technol. 49 (2009) 101–105
[23]H.H. Luc , T.K. Nguyen , V.M. Nguyen, A . Suchocki, A . Kaminska , V.K. Le, V.H . Nguyen , T.T. Luong “Luminescence Spectra of ZnAl2O4: Cr3+ Spinel Nanopowders” Acta. Phys. Pol. A 104(2003)581-587
[24]X. Duan, D. Yuan, Z. Sun, C. Luan, D. Pan, D. Xu, M. Lv “Preparation of Co2+-doped ZnAl2O4 nanoparticles by citrate sol–gel method” J. Alloy. Compd. 386 (2005) 311–314
[25]X. Duan, D. Yuan, X. Cheng, Z. Sun, H. Sun, D. Xu, M. Lv “Spectroscopic properties of Co2+: ZnAl2O4 nanocrystals in sol–gel derived glass–ceramics”J. Phys. Chem. Solid 64 (2003) 1021–1025
[26]王世敏,許祖勛,傅晶,“奈米材料原理與製備”,五南出版社,2004,p. 80
[27]G. Blasses, B.C. Grabmaier “Luminescent Material” Berlin-Heidelerg: Springer-Verlag, 1994
[28]劉如熹,劉宇桓,“發光二極體用氧氮螢光粉介紹”,全華科技(2006).
[29]劉如熹,紀喨勝,“紫外光發光二極體用螢光粉介紹”,全華科技(2003).
[30]蔡木村,“以化學方法合成透光性MgO及SiO2陶瓷粉末之研究 ”,國科會研究報告,1996年
[31]蘇品書,“超微粒子材料技術”復漢出版社(2001)
[32]陳永志、陳姿秀、陳志源,溶膠-凝膠法之研究與技術發展近況 (上) (下),工業材料雜誌,93年2月,206期,169-178.;207期
[33] A.A. Da Silva,A.D. Goncalves,M.R. Davolos “Characterization of nanosized ZnAl2O4 spinel synthesized by the sol–gel method” J. Sol-Gel Sci. Technol. 49 (2009) 101–105
[34] M.T. Tsai “Effects of hydrolysis processing on the character of forsterite gel fibers. Part I: preparation, spinnability and molecular structure.” J. E. Ceram. Soc. 22 (2002) 1073–1083
[35] X. Duan, D. Yuan, X. Wang, H. Xu “Synthesis and Characterization of Nanocrystalline Zinc Aluminum Spinel by a New Sol-Gel Method” J. Sol-Gel Sci. Technol. 35(2005) 221–224
[36]D.T. Palumbo,J.J. Brown,Jr. “Electronic States of Mn2+-Activated Phosphors”J. Electrochem. Soc.: Solid State Science 117 (1970)1184-1188.
[37] H. Matsui, C.N. Xu, Y. Liu, H. Tateyama “Origin of mechanoluminescence from Mn-activated ZnAl2O4:Triboelectricity-induced electroluminescence”Phys. Rev. B 69(2004)235109
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top