[1] 林振華,“光觸媒商業最前線”,全華科技 (2005).
[2] O. Carp, C. L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide” Prog. Solid State Ch. 32 (2004) 33-177.
[3] K. Melghit, A. K. Mohammed, I. A. Amri, “Chimie douce preparation, characterization and photocatalytic activity of nanocrystalline SnO2” Mat. Sci. Eng. B 117 (2005) 302-306.
[4] J. H. Zeng, B. B. Jin, Y. F. Wang, “Facet enhanced photocatalytic effect with uniform single-crystalline zinc oxide nanodisks” Chem. Phys. Lett. 472 (2009) 90-95.
[5] M. Zhang, T. An, X. Hu, C. Wang, G. Sheng, J. Fu, “Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide” Appl. Catal. A-Gen. 260 (2004) 215-222.
[6] W. W. Wang, Y. J. Zhu, and L. X. Yang, “ZnO–SnO2 Hollow Spheres and Hierarchical Nanosheets Hydrothermal Preparation, Formation Mechanism, and Photocatalytic Properties” Adv. Funct. Mater. 17 (2007) 59-64.
[7] H. Wang, S. Baek, J. Lee, S. Lim, “High photocatalytic activity of silver-loaded ZnO-SnO2 coupled catalysts” Chem. Eng. J. 146 (2009) 355-361.
[8] L. Zheng, Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, and J. Zhu, “Network Structured SnO2-ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity” lnorg. Chem. 48 (2009) 1819-1825.
[9] K. Vinodgopal, “Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2-TiO2 Coupled Semiconductor Thin Films” Environ. Sci. Technol. 29 (1995) 841-845.
[10] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors” J. Photoch. Photobio. A 85 (1995) 247-255.
[11] 楊素華,“螢光粉在發光上的應用”,科學發展,2002年10月,358期,66-71.
[12] L. Wang, X. Zhang, X. Liao, and W. Yang, “A simple method to synthesize single-crystalline Zn2SnO4 (ZTO) nanowires and their photoluminescence properties” Nanotechnology 16 (2005) 2928-2931.
[13] Y. C. Chen, Y. H. Chang, and B. S. Tsai, “Photoluminescent Properties of Europium-Activated Zn2SnO4 Phosphors” Mater. Trans. 45 (2004) 1684-1686.
[14] G. Blasse, and G. A. M. Dalhoeven, “On the luminescence of titanium-activated stannates” J. Solid State Chem. 39 (1981) 195-198.
[15] T. Yamashita, K. Ueda, “Blue photoluminescence in Ti-doped alkaline-earth stannates” J. Solid State Chem. 180 (2007) 1410-1413.
[16] Y. C. Chen, Y. H. Chang, B. S. Tsai, “Synthesis and the luminescent properties of europium-activated Ca2SnO4 phosphors” Opt. Mater. 27 (2005) 1874-1878.
[17] Y. Suzuki, and M. Kakihana, “Parallel Solution-Based Synthesis Approach for Search of Lanthanoid-Activated Ca2SnO4 Phosphor Materials” J. Am. Ceram. Soc. 92 (2009) S168-S171.
[18] B. Lei, B. Li, X. Wang, W. Li, “Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4:Mn2+ phosphor” J. Lumin. 118 (2006) 173-178.
[19] A. Kurz, and M. A. Aegerter, “Novel transparent conducting sol-gel oxide coatings” Thin Solid Films 516 (2008) 4513-4518.
[20] http://en.wikipedia.org/wiki/Tin_dioxide
[21] http://en.wikipedia.org/wiki/Zinc_oxide
[22] 余樹楨,“晶體之結構與性質”,渤海堂文化公司 (1996).
[23] 邱永亮,魏盛德,“染色化學”,徐氏基金會 (1978).
[24] S. J. Zhang, H. Q. Yu, Q. R. Li, “Radiolytic degradation of Acid Orange 7: A mechanistic study” Chemosphere 61 (2005) 1003-1011.
[25] 楊萬發,“水及廢水處理化學”,國立編譯館 (1987).
[26] N. Daneshvar, D. Salari, A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2”, J. Photoch. Photobio. A 162 (2004) 317–322.
[27] C. Wang, J. Zhao, X. Wang, B. Mai, G. Sheng, P. Peng, J. Fu, “Preparation, characterization and photocatalytic activity of nano-sized ZnO-SnO2 coupled photocatalysts” Appl. Catal. B-Environ. 39 (2002) 269-279.
[28] C. Wang, X. Wang, B. Q. Xu, J. Zhao, B. Mai, P. Peng, G. Sheng, J. Fu, “Enhanced photocatalytic performance of nanosized coupled ZnO-SnO2 photocatalysts for methyl orange degradation” J. Photoch. Photobio. A 168 (2004) 47-52.
[29] M. Zhang, G. Sheng, J. Fu, T. An, X. Wang, X. Fu, “Novel preparation of nanosized ZnO–SnO2 with high photocatalytic activity by homogeneous co-precipitation method” Mater. Lett. 59 (2005) 3641-3644.
[30] E. M. Seftel, E. Popovici, M. Mertens, E. A. Stefaniak, R. V. Grieken, P. Cool, E. F. Vansant, “SnIV-containing layered double hydroxides as precursors for nano-sized ZnO-SnO2 photocatalysts” Appl. Catal. B-Environ. 84 (2008) 699-705.
[31] J. Bandara, K. Tennakone, P. P. B. Jayatilaka, “Composite Tin and Zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes” Chemosphere 49 (2002) 439-445.
[32] M. Khaled, A. R. Moza, A. A. Issa, “Photodegradation enhancement of Congo red aqueous solution using a mixture of SnO2•xH2O gel-ZnO powder” J. Photoch. Photobio. A 181 (2006) 137-141.
[33] Z. Wen, G. Wang, W. Lu, Q. Wang, Q. Zhang, and J. Li, “Enhanced Photocatalytic Properties of Mesoporous SnO2 Induced by Low Concentration ZnO Doping” Chyst. Growth & Design 7 (2007) 1722-1725.
[34] L. Li, J. Liu, Y. Su, G. Li, X. Chen, X. Qiu, and T. Yan, “Surface doping for photocatalytic purposes relations between particle size, surface modifications, and photoactivity of SnO2-Zn2+ nanocrystals” Nanotechnology 20 (2009) 9 pages.
[35] T. An, M. Zhang, X. Wang, G. Sheng, and J. Fu, “Photocatalytic degradation of gaseous trichloroethene using immobilized ZnO-SnO2 coupled oxide in a flow-through photocatalytic reactor” J. Chem. Technol. Biotechnol. 80 (2005) 251-258.
[36] A. Dodd, A. McKinley, M. Saunders, and T. Tsuzuki, “Mechanochemical synthesis of nanocrystalline SnO2–ZnO photocatalysts” Nanotechnology 17 (2006) 692-698.
[37] G. Blasse, and G. A. M. Dalhoeven, “On the luminescence of titanium-activated stannates” J. Solid State Chem. 39 (1981) 195-198.
[38] Y. C. Chen, Y. H. Chang, and B. S. Tsai, “Photoluminescent Properties of Europium-Activated Zn2SnO4 Phosphors” Mater. Trans. 45 (2004) 1684-1686.
[39] A. Kurz, and M. A. Aegerter, “Transparent Conducting Films in the Zn-Sn-O Tie Line” J. Sol-Gel Sci. Techn. 31 (2004) 267-271.
[40] A. Kurz, K. Brakecha, M. A. Aegerter, “Strategies for novel transparent conducting sol–gel oxide coatings” Thin Solid Films 502 (2006) 212-218.
[41] 高濂,鄭珊,張青紅,“奈米光觸媒”,五南圖書 (2004).
[42] N. Sharma, K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, “Anodic behaviour and X-ray photoelectron spectroscopy of ternary tin oxides” J. Power Sources 139 (2005) 250-260.
[43] 徐敘瑢,蘇勉曾,“發光學與發光材料”,化學工業 (2004).
[44] 張中太,張俊英,無機光致發光材料及應用,化學工業 (2005).
[45] 劉如熹,劉宇桓,“發光二極體用氧氮螢光粉介紹”,全華科技 (2006).
[46] H. M. Yang, J. X. Shi, M. L. Gong, “A novel red emitting phosphor Ca2SnO4:Eu3+” J. Solid State Chem. 178 (2005) 917-920.
[47] Z. Lu, L. Chen, Y. Tang, Y. Li, “Preparation and luminescence properties of Eu3+-doped MSnO3 (M = Ca, Sr and Ba) perovskite materials” J. Alloy. Compo. 387 (2005) L1-L4.
[48] S. L. Fu, T. Yin, and F. Chai, “Synthesis and characterization of Ca2Sn1−xCexO4 with blue luminescence originating from Ce4+ charge transfer transition” Chin. Phys. Soc. 16 (2007) 3129-3113.
[49] H. Yamane, Y. Kaminaga, S. Abe, T. Yamada, “Preparation, crystal structure, and photoluminescence of Ca2SnO4:Eu3+, Y3+” J. Solid State Chem. 181 (2008) 2559-2564.
[50] N. Sharma, K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, “Sol–gel derived nano-crystalline CaSnO3 as high capacity anode material for Li-ion batteries” Electrochem. Commun. 4 (2002) 947–952.
[51] G. Blasse, B. C. Grabmaier, “Luminescence Material”, (1994).
[52] 蔡木村,“以化學方法合成透光性MgO及SiO2陶瓷粉末之研究”,國科會研究報告,1996年,p.11.
[53] 陳永志、陳姿秀、陳志源,“溶膠-凝膠法之研究與技術發展近況 (上) ”,工業材料雜誌,93年2月,206期,169-178.
[54] 楊家銘,“奈米孔洞材料之物理吸脫附分析”,科儀新知,2005年,26期,p.32-p.38.[55] E. Çetinörgü, S. Goldsmith, R.L. Boxman, “Effect of deposition conditions on the characteristics of ZnO-SnO2 thin films deposited by filtered vacuum arc” Thin Solid Films 515 (2006) 880–884.
[56] Y. Hu, H. Zhang, H. Yang, “Synthesis and electrical property of antimony-doped tin oxide powders with barite matrix” J. Alloy. Compd. 453 (2008) 292–297.
[57] P. G. Harrison, N. C. Lloyd, W. Daniell, C. Bailey, and W. Azelee, “Evolution of Microstructure during the Thermal Activation of Chromium-Promoted Tin(IV) Oxide Catalysts: An FT-IR, FT-Raman, XRD, TEM, and XANES/EXAFS Study” Chem. Mater. 11 (1999) 896-909.
[58] J. Zhang and L. Gao, “Synthesis and characterization of nanocrystalline tin oxide by sol–gel method” J. Solid State Chem. 177 (2004) 1425–1430.
[59] R. Wahab, S. G. Ansari, Y. S. Kim, M. A. Dar, H. S. Shin, “Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles” J. Alloy. Compd. 461 (2008) 66-71.
[60] S. Kurajica, E. Tkalcec, J. Sipusic, G. Matijasic, I. Brnardic, I. Simcic, “Synthesis and characterization of nanocrystalline zinc aluminate spinel by sol–gel technique using modified alkoxide precursor” J. Sol-Gel Sci. Technol. 46 (2008) 152-160.
[61] S. Vivekanandhan, M. Venkateswarlu, N. Satyanarayana, “Synthesis and characterization of nanocrystalline LiNi0.5Co0.5VO4 powders by citric acid assisted sol–gel combustion process” J. Alloy. Compd. 462 (2008) 328–334.
[62] H. Zhao, Y. Li, R. Liu, F. Zhao, Y. Hu, “Synthesis method for silica needle-shaped nano-hollow structure” Mater. Lett. 62 (2008) 3401–3403.
[63] M. I. Zaki, H. Knözinger, B. Tesche, G. A. H. Mekhemer, “Influence of phosphonation and phosphation on surface acid–base and morphological properties of CaO as investigated by in situ FTIR spectroscopy and electron microscopy” J. Colloid Interf. Sci. 303 (2006) 9–17.
[64] J. M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants” Catal. Today 53 (1999) 115–129.
[65] H. Donker, W. M. A. Smit, G. Blasse, “On the luminescence of some tin-actived alkaline-earth orthophosphates” J. Electrochem. Soc. 136 (1989) 3130-3135.
[66] W. C. Wong, D. S. McClure, “Charge-exchange processes in titanium-doped sapphire crystals I. Charge-exchange energies and titanium-bound excitons” Phys. Rev. B 51 (1995) 5682-5692.
[67] V. B. Mikhailik, H. Kraus, D. Wahl, “Luminescence studies of Ti-doped Al2O3 using vacuum ultraviolet synchrotorn radiation” Appl. Phys. Lett. 86 (2005) 3 pages.
[68] A. M. Al-Shaikh, Q. C. Qiu, P. Roura, W. Ulrici, B. Clerjaud, C. A. Bates, J. L. Dunn, “Effects of uniaxial stress on the 2E→2T2 absorption lines of GaP:Ti3+ and the nature of the Jahn–Teller coupling” J. Phys. Condens. Mat. 10 (1998) 3367-3386.
[69] 王世敏,許祖勛,傅晶,“奈米材料原理與製備”,五南出版社 (2004).
[70] 蘇品書,“超微粒子材料技術”,復漢出版社 (2001).