跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃信翔
研究生(外文):Hsin-Hsiang Huang
論文名稱:氧化錫基奈米相之光學特性研究
論文名稱(外文):The Study on the Optical Characterization of Tin Oxide-Based Nanophase
指導教授:蔡木村
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:97
中文關鍵詞:光觸媒發光溶膠-凝膠法氧化錫鋅錫酸鈣
外文關鍵詞:photocatalystphotoluminescentsol-gel methodtin-zinc oxidecalcium stannate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以溶膠-凝膠法製備氧化錫基奈米相材料,並探討不同前驅物、摻雜劑量及熱處理條件對其在晶體結構、微結構、光觸媒、與發光特性之影響。
以錫金屬鹽類為起始材料,並添加不同劑量之鋅鹽類,均勻混合之溶膠,經熱處理後製備氧化錫基奈米相粉體。由X-光繞射分析及微結構分析顯示,隨著鋅劑量的增加氧化鋅結晶性會逐漸變強,且一次粒子亦會有粗化的趨勢。由表面積分析顯示在氧化錫中添加微量氧化鋅會提高比表面積值,且隨著鋅劑量的增加比表面機會有逐漸下降的趨勢。光降解反應結果顯示,熱處理條件、鋅的添加劑量、pH值及電子電洞對的再結合等因素,皆會影響降解的效率。
此外,以金屬無機鹽類為起始材料,並添加不同發光中心(M1)劑量,均勻混合之溶膠,經熱處理後可製備具有發光特性之錫酸鈣(Ca2SnO4)膠體粉末及薄膜。乾燥後之粉體經800˚C熱處理可生成錫酸鈣的結晶相,至1000˚C可生成錫酸鈣單相結晶。摻雜的試片,經UV光激發後,於450 nm處有一明顯發射波,且M1濃度在適當範圍內具有最強的發光強度,且熱處理條件、摻雜劑量、粉體之結晶性及微結構等因素亦會影響其發光強度。
In this study, tin oxide-based nanophases were prepared by the sol-gel process. The effects of various precursors, dopant amounts and heat-treatments on the structure, microstructure, photocatalyst and photoluminescent properties were investigated.
Tin metal salts were used as precursors with various dopants of zinc salts. The clear sols were obtained by added proper concentrations of zinc salts and nanophases tin-zinc oxide were formed after heat-treatments. With increasing the added amount of zinc salts, X-ray diffraction and microstructure analyzes showed the zinc oxide crystallinity and the nanoparticle size were remarkable increase. Specific surface areas increased when a few zinc oxide were added but remarkably decreased with increasing amount of zinc oxide. Photodegradation analysis showed the relative degradation depended on the heat-treatment, dopant amount, pH value and the electron-hole recombination rate.
Moreover, metal salts were used as precursors with various dopants of luminescence center (M1) and the homogenous calcium stannate phosphor powder and thin films could be obtained. All dried gels generate Ca2SnO4 structure after heating at 800˚C and single crystalline Ca2SnO4 were obtained following heated to 1000˚C. The peak wavelengths of the blue emission located at 450 nm for doped luminescence center (M1). The proper M1 concentrations had the best PL intensity. The relative PL intensity also depended on the heat-treatments, dopant amount, crystallinity, and microstructure of the gels.
中文摘要..................................................i
英文摘要.................................................ii
誌謝....................................................iii
目錄.....................................................iv
表目錄...................................................ix
圖目錄....................................................x

第一章 緒論...............................................1
1.1 前言..................................................1
1.2 研究動機..............................................2
1.3 二氧化錫功能性應用....................................4
1.3.1 奈米光觸媒..........................................4
1.3.2 光學特性............................................4
1.3.3 量子效應............................................5
1.3.4 發光特性............................................5
1.4 陶瓷粉末與薄膜製備方法................................6
1.4.1物理方法.............................................6
1.4.1.1 蒸鍍法..........................................6
1.4.1.2 濺鍍法..........................................6
1.4.2 化學方法............................................6
1.4.2.1 共析出法........................................6
1.4.2.2 化學氣相沉積法..................................7
1.4.2.3 噴霧熱分解法....................................7
1.4.2.4 水熱法..........................................7
1.4.2.5 溶膠凝膠法......................................7
第二章 基礎理論與文獻回顧.................................9
2.1 氧化錫鋅(SnO2/ZnO)簡介................................9
2.1.1 基本物性及晶體結構................................9
2.1.2 相關應用及原理...................................11
2.1.2.1 偶氮染料.....................................11
2.1.2.2 光觸媒之光化學反應...........................15
2.1.2.3 光催化降解原理...............................15
2.1.2.4 SnO2/ZnO於光催化降解的應用...................17
2.2 氧化錫鈣(Ca2SnO4)簡介................................21
2.2.1 基本物性及晶體結構.................................21
2.2.2 相關應用及原理...................................21
2.2.2.1 螢光材料的定義...............................21
2.2.2.2 螢光材料的分類...............................21
2.2.2.3 發光原理.....................................24
2.2.2.4 Ca2SnO4於光致發光的應用......................25
2.2.2.5 影響發光效率的因素...........................26
2.3 溶膠-凝膠法..........................................29
2.3.1 溶膠-凝膠法之簡介..................................29
2.3.2 溶膠-凝膠之反應..................................29
2.4 研究目的.............................................31
第三章 實驗方法與步驟....................................32
3.1 實驗概述.............................................32
3.1.1 製備光觸媒粉末...................................32
3.1.2 製備發光膠體粉末.................................33
3.2 特性分析儀器原理簡介.................................36
3.2.1 結構分析...........................................36
3.2.1.1 X-光繞射儀 (XRD)...............................36
3.2.1.2 霍氏轉換紅外線光譜儀 (FT-IR)...................36
3.2.1.3 場發射掃描式電子顯微鏡(FE-SEM).................36
3.2.2 物性分析...........................................37
3.2.2.1 恆溫吸附儀 (BET)...............................37
3.2.3 光學特性分析.......................................38
3.2.3.1 紫外光/可見光/近紅外光光譜儀 (UV-vis-NIR)......38
3.2.3.2 螢光光譜儀 (Fluorescence Spectrophotometer)....38
第四章 結果與討論........................................42
4.1 以氧化錫基添加鋅鹽製備之光觸媒粉體...................42
4.1.1 溶膠-凝膠反應.....................................42
4.1.2 結構分析...........................................43
4.1.2.1 XRD繞射與結晶性分析..........................43
4.1.2.2 FT-IR分析....................................48
4.1.2.3 微結構分析...................................50
4.1.3 物性分析.........................................53
4.1.4 光學特性分析.....................................55
4.1.4.1 UV-Vis分析...................................55
4.1.4.2 光催化分析...................................58
4.2 以氧化錫基添加鈣鹽製備錫酸鈣之螢光膠體...............61
4.2.1 溶膠-凝膠反應......................................61
4.2.2 結構分析.........................................64
4.2.2.1 XRD繞射與結晶性分析...........................64
4.2.2.2 FT-IR分析....................................71
4.2.2.3 微結構分析...................................76
4.2.3 光學特性分析.......................................81
4.2.3.1 螢光特性分析...................................81
第五章 結論..............................................91
未來研究方向.............................................92
參考文獻.................................................93
[1] 林振華,“光觸媒商業最前線”,全華科技 (2005).
[2] O. Carp, C. L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide” Prog. Solid State Ch. 32 (2004) 33-177.
[3] K. Melghit, A. K. Mohammed, I. A. Amri, “Chimie douce preparation, characterization and photocatalytic activity of nanocrystalline SnO2” Mat. Sci. Eng. B 117 (2005) 302-306.
[4] J. H. Zeng, B. B. Jin, Y. F. Wang, “Facet enhanced photocatalytic effect with uniform single-crystalline zinc oxide nanodisks” Chem. Phys. Lett. 472 (2009) 90-95.
[5] M. Zhang, T. An, X. Hu, C. Wang, G. Sheng, J. Fu, “Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide” Appl. Catal. A-Gen. 260 (2004) 215-222.
[6] W. W. Wang, Y. J. Zhu, and L. X. Yang, “ZnO–SnO2 Hollow Spheres and Hierarchical Nanosheets Hydrothermal Preparation, Formation Mechanism, and Photocatalytic Properties” Adv. Funct. Mater. 17 (2007) 59-64.
[7] H. Wang, S. Baek, J. Lee, S. Lim, “High photocatalytic activity of silver-loaded ZnO-SnO2 coupled catalysts” Chem. Eng. J. 146 (2009) 355-361.
[8] L. Zheng, Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, and J. Zhu, “Network Structured SnO2-ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity” lnorg. Chem. 48 (2009) 1819-1825.
[9] K. Vinodgopal, “Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2-TiO2 Coupled Semiconductor Thin Films” Environ. Sci. Technol. 29 (1995) 841-845.
[10] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors” J. Photoch. Photobio. A 85 (1995) 247-255.
[11] 楊素華,“螢光粉在發光上的應用”,科學發展,2002年10月,358期,66-71.
[12] L. Wang, X. Zhang, X. Liao, and W. Yang, “A simple method to synthesize single-crystalline Zn2SnO4 (ZTO) nanowires and their photoluminescence properties” Nanotechnology 16 (2005) 2928-2931.
[13] Y. C. Chen, Y. H. Chang, and B. S. Tsai, “Photoluminescent Properties of Europium-Activated Zn2SnO4 Phosphors” Mater. Trans. 45 (2004) 1684-1686.
[14] G. Blasse, and G. A. M. Dalhoeven, “On the luminescence of titanium-activated stannates” J. Solid State Chem. 39 (1981) 195-198.
[15] T. Yamashita, K. Ueda, “Blue photoluminescence in Ti-doped alkaline-earth stannates” J. Solid State Chem. 180 (2007) 1410-1413.
[16] Y. C. Chen, Y. H. Chang, B. S. Tsai, “Synthesis and the luminescent properties of europium-activated Ca2SnO4 phosphors” Opt. Mater. 27 (2005) 1874-1878.
[17] Y. Suzuki, and M. Kakihana, “Parallel Solution-Based Synthesis Approach for Search of Lanthanoid-Activated Ca2SnO4 Phosphor Materials” J. Am. Ceram. Soc. 92 (2009) S168-S171.
[18] B. Lei, B. Li, X. Wang, W. Li, “Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4:Mn2+ phosphor” J. Lumin. 118 (2006) 173-178.
[19] A. Kurz, and M. A. Aegerter, “Novel transparent conducting sol-gel oxide coatings” Thin Solid Films 516 (2008) 4513-4518.
[20] http://en.wikipedia.org/wiki/Tin_dioxide
[21] http://en.wikipedia.org/wiki/Zinc_oxide
[22] 余樹楨,“晶體之結構與性質”,渤海堂文化公司 (1996).
[23] 邱永亮,魏盛德,“染色化學”,徐氏基金會 (1978).
[24] S. J. Zhang, H. Q. Yu, Q. R. Li, “Radiolytic degradation of Acid Orange 7: A mechanistic study” Chemosphere 61 (2005) 1003-1011.
[25] 楊萬發,“水及廢水處理化學”,國立編譯館 (1987).
[26] N. Daneshvar, D. Salari, A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2”, J. Photoch. Photobio. A 162 (2004) 317–322.
[27] C. Wang, J. Zhao, X. Wang, B. Mai, G. Sheng, P. Peng, J. Fu, “Preparation, characterization and photocatalytic activity of nano-sized ZnO-SnO2 coupled photocatalysts” Appl. Catal. B-Environ. 39 (2002) 269-279.
[28] C. Wang, X. Wang, B. Q. Xu, J. Zhao, B. Mai, P. Peng, G. Sheng, J. Fu, “Enhanced photocatalytic performance of nanosized coupled ZnO-SnO2 photocatalysts for methyl orange degradation” J. Photoch. Photobio. A 168 (2004) 47-52.
[29] M. Zhang, G. Sheng, J. Fu, T. An, X. Wang, X. Fu, “Novel preparation of nanosized ZnO–SnO2 with high photocatalytic activity by homogeneous co-precipitation method” Mater. Lett. 59 (2005) 3641-3644.
[30] E. M. Seftel, E. Popovici, M. Mertens, E. A. Stefaniak, R. V. Grieken, P. Cool, E. F. Vansant, “SnIV-containing layered double hydroxides as precursors for nano-sized ZnO-SnO2 photocatalysts” Appl. Catal. B-Environ. 84 (2008) 699-705.
[31] J. Bandara, K. Tennakone, P. P. B. Jayatilaka, “Composite Tin and Zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes” Chemosphere 49 (2002) 439-445.
[32] M. Khaled, A. R. Moza, A. A. Issa, “Photodegradation enhancement of Congo red aqueous solution using a mixture of SnO2•xH2O gel-ZnO powder” J. Photoch. Photobio. A 181 (2006) 137-141.
[33] Z. Wen, G. Wang, W. Lu, Q. Wang, Q. Zhang, and J. Li, “Enhanced Photocatalytic Properties of Mesoporous SnO2 Induced by Low Concentration ZnO Doping” Chyst. Growth & Design 7 (2007) 1722-1725.

[34] L. Li, J. Liu, Y. Su, G. Li, X. Chen, X. Qiu, and T. Yan, “Surface doping for photocatalytic purposes relations between particle size, surface modifications, and photoactivity of SnO2-Zn2+ nanocrystals” Nanotechnology 20 (2009) 9 pages.
[35] T. An, M. Zhang, X. Wang, G. Sheng, and J. Fu, “Photocatalytic degradation of gaseous trichloroethene using immobilized ZnO-SnO2 coupled oxide in a flow-through photocatalytic reactor” J. Chem. Technol. Biotechnol. 80 (2005) 251-258.
[36] A. Dodd, A. McKinley, M. Saunders, and T. Tsuzuki, “Mechanochemical synthesis of nanocrystalline SnO2–ZnO photocatalysts” Nanotechnology 17 (2006) 692-698.
[37] G. Blasse, and G. A. M. Dalhoeven, “On the luminescence of titanium-activated stannates” J. Solid State Chem. 39 (1981) 195-198.
[38] Y. C. Chen, Y. H. Chang, and B. S. Tsai, “Photoluminescent Properties of Europium-Activated Zn2SnO4 Phosphors” Mater. Trans. 45 (2004) 1684-1686.
[39] A. Kurz, and M. A. Aegerter, “Transparent Conducting Films in the Zn-Sn-O Tie Line” J. Sol-Gel Sci. Techn. 31 (2004) 267-271.
[40] A. Kurz, K. Brakecha, M. A. Aegerter, “Strategies for novel transparent conducting sol–gel oxide coatings” Thin Solid Films 502 (2006) 212-218.
[41] 高濂,鄭珊,張青紅,“奈米光觸媒”,五南圖書 (2004).
[42] N. Sharma, K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, “Anodic behaviour and X-ray photoelectron spectroscopy of ternary tin oxides” J. Power Sources 139 (2005) 250-260.
[43] 徐敘瑢,蘇勉曾,“發光學與發光材料”,化學工業 (2004).
[44] 張中太,張俊英,無機光致發光材料及應用,化學工業 (2005).
[45] 劉如熹,劉宇桓,“發光二極體用氧氮螢光粉介紹”,全華科技 (2006).
[46] H. M. Yang, J. X. Shi, M. L. Gong, “A novel red emitting phosphor Ca2SnO4:Eu3+” J. Solid State Chem. 178 (2005) 917-920.
[47] Z. Lu, L. Chen, Y. Tang, Y. Li, “Preparation and luminescence properties of Eu3+-doped MSnO3 (M = Ca, Sr and Ba) perovskite materials” J. Alloy. Compo. 387 (2005) L1-L4.
[48] S. L. Fu, T. Yin, and F. Chai, “Synthesis and characterization of Ca2Sn1−xCexO4 with blue luminescence originating from Ce4+ charge transfer transition” Chin. Phys. Soc. 16 (2007) 3129-3113.
[49] H. Yamane, Y. Kaminaga, S. Abe, T. Yamada, “Preparation, crystal structure, and photoluminescence of Ca2SnO4:Eu3+, Y3+” J. Solid State Chem. 181 (2008) 2559-2564.
[50] N. Sharma, K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, “Sol–gel derived nano-crystalline CaSnO3 as high capacity anode material for Li-ion batteries” Electrochem. Commun. 4 (2002) 947–952.
[51] G. Blasse, B. C. Grabmaier, “Luminescence Material”, (1994).
[52] 蔡木村,“以化學方法合成透光性MgO及SiO2陶瓷粉末之研究”,國科會研究報告,1996年,p.11.

[53] 陳永志、陳姿秀、陳志源,“溶膠-凝膠法之研究與技術發展近況 (上) ”,工業材料雜誌,93年2月,206期,169-178.
[54] 楊家銘,“奈米孔洞材料之物理吸脫附分析”,科儀新知,2005年,26期,p.32-p.38.
[55] E. Çetinörgü, S. Goldsmith, R.L. Boxman, “Effect of deposition conditions on the characteristics of ZnO-SnO2 thin films deposited by filtered vacuum arc” Thin Solid Films 515 (2006) 880–884.
[56] Y. Hu, H. Zhang, H. Yang, “Synthesis and electrical property of antimony-doped tin oxide powders with barite matrix” J. Alloy. Compd. 453 (2008) 292–297.
[57] P. G. Harrison, N. C. Lloyd, W. Daniell, C. Bailey, and W. Azelee, “Evolution of Microstructure during the Thermal Activation of Chromium-Promoted Tin(IV) Oxide Catalysts: An FT-IR, FT-Raman, XRD, TEM, and XANES/EXAFS Study” Chem. Mater. 11 (1999) 896-909.
[58] J. Zhang and L. Gao, “Synthesis and characterization of nanocrystalline tin oxide by sol–gel method” J. Solid State Chem. 177 (2004) 1425–1430.
[59] R. Wahab, S. G. Ansari, Y. S. Kim, M. A. Dar, H. S. Shin, “Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles” J. Alloy. Compd. 461 (2008) 66-71.
[60] S. Kurajica, E. Tkalcec, J. Sipusic, G. Matijasic, I. Brnardic, I. Simcic, “Synthesis and characterization of nanocrystalline zinc aluminate spinel by sol–gel technique using modified alkoxide precursor” J. Sol-Gel Sci. Technol. 46 (2008) 152-160.
[61] S. Vivekanandhan, M. Venkateswarlu, N. Satyanarayana, “Synthesis and characterization of nanocrystalline LiNi0.5Co0.5VO4 powders by citric acid assisted sol–gel combustion process” J. Alloy. Compd. 462 (2008) 328–334.
[62] H. Zhao, Y. Li, R. Liu, F. Zhao, Y. Hu, “Synthesis method for silica needle-shaped nano-hollow structure” Mater. Lett. 62 (2008) 3401–3403.
[63] M. I. Zaki, H. Knözinger, B. Tesche, G. A. H. Mekhemer, “Influence of phosphonation and phosphation on surface acid–base and morphological properties of CaO as investigated by in situ FTIR spectroscopy and electron microscopy” J. Colloid Interf. Sci. 303 (2006) 9–17.
[64] J. M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants” Catal. Today 53 (1999) 115–129.
[65] H. Donker, W. M. A. Smit, G. Blasse, “On the luminescence of some tin-actived alkaline-earth orthophosphates” J. Electrochem. Soc. 136 (1989) 3130-3135.
[66] W. C. Wong, D. S. McClure, “Charge-exchange processes in titanium-doped sapphire crystals I. Charge-exchange energies and titanium-bound excitons” Phys. Rev. B 51 (1995) 5682-5692.
[67] V. B. Mikhailik, H. Kraus, D. Wahl, “Luminescence studies of Ti-doped Al2O3 using vacuum ultraviolet synchrotorn radiation” Appl. Phys. Lett. 86 (2005) 3 pages.

[68] A. M. Al-Shaikh, Q. C. Qiu, P. Roura, W. Ulrici, B. Clerjaud, C. A. Bates, J. L. Dunn, “Effects of uniaxial stress on the 2E→2T2 absorption lines of GaP:Ti3+ and the nature of the Jahn–Teller coupling” J. Phys. Condens. Mat. 10 (1998) 3367-3386.
[69] 王世敏,許祖勛,傅晶,“奈米材料原理與製備”,五南出版社 (2004).
[70] 蘇品書,“超微粒子材料技術”,復漢出版社 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top