跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/29 17:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳君濠
研究生(外文):Jun-Hao Chen
論文名稱:陰極電弧電漿沉積Ti-Si-N、Ti-Si-C-N薄膜及特性研究
論文名稱(外文):Deposition and characterization of Ti-Si-N, Ti-Si-C-N films by cathodic arc plasma evaporation
指導教授:蔡丕椿
指導教授(外文):Pi-Chuen Tsai
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:159
中文關鍵詞:陰極電弧電漿蒸鍍氮化鈦矽碳氮化鈦矽
外文關鍵詞:cathodic arc plasma evaporationTi-Si-NTi-Si-C-N
相關次數:
  • 被引用被引用:1
  • 點閱點閱:488
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩部份,第一部份利用過濾式陰極電弧電漿蒸鍍系統來製備奈米複合Ti-Si-N薄膜,探討基材偏壓對薄膜之微結構、機械與腐蝕性質之影響。第二部份利用陰極電弧電漿蒸鍍系統來製備Ti-Si-N、Ti-Si-C-N薄膜,探討C2H2/N2流量比(分別為0、0.5、1、2)對所製備薄膜之微結構、機械性質、腐蝕性質與高溫氧化性能之影響。利用掃描式電子顯微鏡、原子力顯微鏡、穿透式電子顯微鏡、X光繞射儀、X光光電子能譜儀、拉曼光譜儀、奈米壓痕試驗、磨耗及腐蝕試驗來進行薄膜之分析。
第一部份之研究結果顯示,使用過濾系統所沉積Ti-Si-N薄膜,基材偏壓設定為-120V可以得到緻密的結構及最佳之抗腐蝕性,XRD和XPS分析之結果顯示,薄膜結構是由TiN晶粒和非晶質Si3N4所構成。Ti-Si-N薄膜經過磨耗測試,發現能有效降低摩擦係數至0.45~0.55之間。
第二部份之研究結果顯示,Ti-Si-C-N薄膜之微顆粒分佈、沉積速率及表面粗糙度會隨著C2H2/N2流量比的增加而增加。由於非晶質阻礙晶粒的成長,其晶粒大小約為4nm左右。從TEM觀察流量比分別為0.5與1,發現非晶質處於晶界處圍繞Ti(C,N)晶粒,而流量比為2時,其Ti、Si、C、N、O固溶在一起形成非晶質結構。添加C於Ti-Si-N薄膜中,能有效改善抗磨耗性,其摩擦係數約0.2~0.3之間,但無法改善薄膜之刮痕附著性。薄膜硬度會隨著C2H2/N2流量比的增加而降低,硬度範圍介於4GPa~34GPa之間,且抗腐蝕性也會隨著C2H2/N2流量比的增加降低。
第二部份之薄膜經過高溫氧化處理,發現添加C於Ti-Si-N薄膜中並無法改善薄膜之抗氧化性。薄膜形成的氧化層主要是(Ti,Si)O2(SiO2固溶於TiO2中),而其結晶結構主要為金紅石相(Rutile)及銳鈦礦相(Anatase),在流量比分別為0、0.5、1經過高溫氧化後,會形成較多TiO2的金紅石相,且由SEM觀察發現金紅石相會以大晶粒呈現。而流量比為2時,會形成較多TiO2的銳鈦礦相。本研究並利用X光光電子能譜儀針對氧化前後薄膜之元素鍵結情形做詳細之分析,也利用拉曼光譜儀針對磨耗試片、氧化前後試片之存在相進行詳細的分析。
There are two phases in this study. In phase one, nanocomposite Ti-Si-N films were deposited by a filtered cathodic arc plasma deposition system. The influences of bias voltages on the microstructure, mechanical and corrosion properties of the films were investigated. In phase two, Ti-Si-N and Ti-Si-C-N films were deposited by a dual cathodic arc plasma deposition system. The influences of C2H2/N2 flow rate ratio on the microstructure, mechanical properties, corrosion resistance and oxidation behavior of the films were investigated. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction techniques (XRD), X-ray photoelectron spectroscope (XPS), Raman spectroscopy, nano-indenter, wear and corrosion testes were also employed to investigate the microstructures and properties of films. The results of the experiment show that Ti-Si-N films which were deposited using filter system revealed characteristics which are smooth surface, dense structure, good wear and corrosion resistance. The incorporation of C in Ti-Si-N film improves the wear behavior of the films while that were unbeneficial for corrosion and oxidation resistance. The friction coefficients of the TiSiCN films were between 0.2 and 0.3. The hardness of the film decreased when the C2H2/N2 flow rate ratio increased, the value of the hardness were between 4GPa~34GPa. After oxidation at high temperature, the oxide layer consists of TiO2 and SiO2 which presented as a solid solution. As the C content increased, the dominant TiO2 phase in oxide layer changed from rutile to anatase.
中文摘要…………………………………………………………… i
英文摘要…………………………………………………………… iii
致謝………………………………………………………………… iv
總目錄……………………………………………………………… v
圖目錄……………………………………………………………… viii
表目錄……………………………………………………………… xv
第一章 前言……………………………………………………… 1
第二章 文獻回顧………………………………………………… 3
2-1 陰極電弧沉積原理………………………………………… 3
2-2 陰極點……………………………………………………… 5
2-3 電弧放電型態……………………………………………… 7
2-4 鍍膜微結構………………………………………………… 9
2-5 TiSiN薄膜文獻回顧………………………………………… 12
2-6 TiSiCN薄膜文獻回顧……………………………………… 15
2-7非晶質Si3N4………………………………………………… 17
第三章 實驗方法與步驟………………………………………… 18
3-1 實驗流程…………………………………………………… 18
3-2 鍍膜設備與實驗設計……………………………………… 19
3-3 膜層設計…………………………………………………… 23
3-4 試片準備…………………………………………………… 25
3-5 試片清潔…………………………………………………… 26
3-6 鍍膜操作程序……………………………………………… 28
3-7 分析儀器…………………………………………………… 30
3-7-1 場發射掃描式電子顯微鏡……………………………… 30
3-7-2 能量散佈光譜儀………………………………………… 33
3-7-3 原子力顯微鏡…………………………………………… 34
3-7-4 X光繞射分析儀…………………………………………… 35
3-7-5 穿透式電子顯微鏡……………………………………… 38
3-7-6 X光光電子能譜儀………………………………………… 41
3-7-7 奈米壓痕試驗…………………………………………… 42
3-7-8 磨耗試驗………………………………………………… 44
3-7-9 腐蝕試驗………………………………………………… 49
3-7-10刮剝試驗機……………………………………………… 51
3-7-11 高溫氧化試驗…………………………………………… 52
3-7-12 附著力分析……………………………………………… 53
3-7-13 拉曼分析光譜…………………………………………… 54
第四章 結果與討論……………………………………………… 55
4-1 加裝過濾管且控制偏壓(Bias)對TiSiN薄膜性質的影響… 55
4-1-1 SEM表面形貌分析……………………………………… 55
4-1-2 SEM斷面形貌分析……………………………………… 58
4-1-3 AFM表面形貌分析……………………………………… 60
4-1-4 X-ray繞射分析………………………………………… 63
4-1-5 XPS分析………………………………………………… 65
4-1-6 奈米壓痕分析…………………………………………… 71
4-1-7 磨耗分析………………………………………………… 72
4-1-8 腐蝕分析………………………………………………… 76
4-2 TiSiN、TiSiCN、TiN薄膜特性之比較…………………… 77
4-2-1 SEM表面形貌分析……………………………………… 77
4-2-2 SEM斷面形貌分析……………………………………… 79
4-2-3 AFM表面形貌分析……………………………………… 81
4-2-4 X-ray繞射分析………………………………………… 84
4-2-5 XPS分析………………………………………………… 86
4-2-6 TEM分析………………………………………………… 101
4-2-7 Ramen分析……………………………………………… 103
4-2-8 硬度測試及殘留應力…………………………………… 104
4-2-9 磨耗測試………………………………………………… 105
4-2-10 刮痕測試………………………………………………… 109
4-2-11 附著力分析……………………………………………… 115
4-2-12 腐蝕分析………………………………………………… 118
4-2-13 高溫氧化試驗…………………………………………… 121
4-2-12-1 表面形貌分析……………………………………… 121
4-2-12-2 斷面形貌分析……………………………………… 133
4-2-12-3 X-ray繞射分析……………………………………… 142
4-2-12-4 Raman………………………………………………… 145
4-2-12-5 XPS分析……………………………………………… 147
第五章 結論……………………………………………………… 150
參考文獻…………………………………………………………… 155
1. L. Fouilland, L. Imhoff, A. Bouteville, S. Benayoun, J.C. Remy, J. Perrikre, M. Morcrette, “Composition and tribological characterization of chemically vapour-deposited TiN layer”, Surface and Coatings Technology 100–101 (1998) 146–148.
2. Akira Azushima, Yasuo Tannoa, Hiroyuki Iwata, Kohshiro Aoki,“Coefficients of friction of TiN coatings with preferred grain orientations under dry condition”, Wear 265 (2008) 1017–1022.
3. C.H. Liang, G.W. Meng, W. Chen, Y.W. Wang, L.D. Zhang, “Growth and characterization of TiC nanorods activated by nickel nanoparticles”, Journal of Crystal Growth 220 (2000) 296–300.
4. Hisashi Watanabe, Yutaka Sato, Chaoyin Nie, Akiro Ando, Saburo Ohtani, Nobuya Iwamoto, “The mechanical properties and microstructure of Ti–Si–N nanocomposite films by ion plating”, Surface and Coatings Technology 169–170 (2003) 452–455.
5. Hong-yu Zhao, Qiu-lin Fan, Li-xin Song, Tao Zhang, Er-wei Shi, Xing-fang Hu, “Synthesis and characterization of superhard Ti–Si–N films obtained in an inductively coupled plasma enhanced chemical vapor deposition (ICP-CVD) with magnetic confinement”, Applied Surface Science 252 (2006) 3065–3072.
6. F. Vaz , S. Carvalho , L. Rebouta, M.Z. Silva , A. Paúl, D. Schneider, “Young’s modulus of (Ti,Si)N films by surface acoustic waves and indentation techniques”, Thin Solid Films 408 (2002) 160–168.
7. Y.C. Ee, Z. Chen, S.B. Law, S. Xu, N.L. Yakovlev, M.Y. Lai, “Copper diffusion in Ti–Si–N layers formed by inductively coupled plasma implantation”, Applied Surface Science 253 (2006) 530–534.
8. J. Wagner, V. Edlmayr, M. Penoy, C. Michotte, C. Mitterer, M. Kathrein, “Deposition of Ti–Al–N coatings by thermal CVD”, International Journal of Refractory Metals & Hard Materials 26 (2008) 563–568.
9. J.C. Oliveira, A. Manaia, A. Cavaleiro, “Hard amorphous Ti–Al–N coatings deposited by sputtering”, Thin Solid Films 516 (2008) 5032–5038.
10. P. Budzynski, J. Sielanko, Z. Surowiec, “Properties and phase transition of (Ti,Al)N thin films prepared by ion beam-assisted deposition”, Intermetallics 16 (2008) 987–994.
11. P.H. Mayrhofer, M. Stoiber, “Thermal stability of superhard Ti–B–N coatings”, Surface & Coatings Technology 201 (2007) 6148–6153.
12. Y.H. Lu, Y.G. Shen, Z.F. Zhou, K.Y. Li, “Effects of B content and wear parameters on dry sliding wear behaviors of nanocomposite Ti–B–N thin films”, Wear 262 (2007) 1372–1379.
13. Li Chen, S.Q. Wang, S.Z. Zhou, Jia Li, Y.Z. Zhang, “Microstructure and mechanical properties of Ti(C,N) and TiN/Ti(C,N) multilayer PVD coatings”, International Journal of Refractory Metals & Hard Materials 26 (2008) 456–460.
14. Ping Feng, Yuehui He, Yifeng Xiao, Weihao Xiong, “Effect of VC addition on sinterability and microstructure of ultrafine Ti(C,N)-based cermets in spark plasma sintering”, Journal of Alloys and Compounds 460 (2008) 453–459.
15. Y.S. Li, S. Shimada, H. Kiyono, A. Hirose, “Synthesis of Ti–Al–Si–N nanocomposite films using liquid injection PECVD from alkoxide precursors”, Acta Materialia 54 (2006) 2041–2048.
16. Jeong Suk Kim, Gyeng Joong Kim, Myung Chang Kang, “Cutting performance of Ti–Al–Si–N coated tool by a hybrid-coating system for high-hardened materials”, Jung Wook Kim, Kwang Ho Kim, Surface & Coatings Technology 193 (2005) 249– 254.
17. Dong-Hau Kuo, Wen-Chieh Liao, “A new class of Ti–Si–C–N coatings obtained by chemical vapor deposition, Part III: 650–800oC process”, Thin Solid Films 419 (2002) 11–17.
18. Dayan Ma, Shengli Ma, Hanshan Dong, Kewei Xu, Tom Bell, “Microstructure and tribological behaviour of super-hard Ti–Si–C–N nanocomposite coatings deposited by plasma enhanced chemical vapour deposition”, Thin Solid Films 496 (2006) 438–444.
19. Dayan Ma, Shengli Ma, Kewei Xu, “Superhard nanocomposite Ti–Si–C–N coatings prepared by pulsed-d.c plasma enhanced CVD”, Surface & Coatings Technology 200 (2005) 382–386.
20. Dong-Hau Kuo, Wen-Chieh Liao, “Ti–N, Ti–C–N, Ti–Si–N coatings obtained by APCVD at 650–800oC”, Applied Surface Science 199 (2002) 278–286.
21. Eung-Ahn Lee, Kwang Ho Kim, “Deposition and mechanical properties of Ti–Si–N coated layer on WC–Co by RF inductively coupled plasma-enhanced chemical vapor deposition”, Thin Solid Films 420–421 (2002) 371–376.
22. S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H.-D. Männling, P. Nesladek, G. Dollinger, A. Bergmaier, “Composition, nanostructure and origin of the ultrahardness in nc-TiN /a-Si3N4 /a- and nc-TiSi2 nanocomposites with Hv = 80 to ≧105 GPa”, Surface and Coatings Technology 133–134 (2000) 152–159.
23. Ning Jiang, Y.G. Shen, Y.-W. Mai, Tai Chan, Simon C. Tung, “Nanocomposite Ti–Si–N films deposited by reactive unbalanced magnetron sputtering at room temperature”, Materials Science and Engineering B106 (2004) 163–171.
24. Ping Zhang, Zhihai Cai, Wanquan Xiong, “Influence of Si content and growth condition on the microstructure and mechanical properties of Ti–Si–N nanocomposite films”, Surface & Coatings Technology 201 (2007) 6819–6823.
25. S. Vepfek, S. Reiprich, “A concept for the design of novel superhard coatings”, Thin Solid Films 268 ( 1995) 64–71.
26. P.J. Martin, A. Bendavid, “Properties of Ti1-xSixNy films deposited by concurrent cathodic arc evaporation and magnetron sputtering”, Surface and Coatings Technology 163 –164 (2003) 245–250.
27. L. Rebouta, C.J. Tavares, R. Aimo, Z. Wang, K. Pischow, E. Alves, T.C. Rojas, J.A. Odriozola, “Hard nanocomposite Ti-Si-N coatings prepared by DC reactive magnetron sputtering”, Surface and Coatings Technology 133–134 (2000) 234–239.
28. 真空技術與運用,13 (2002) 350。
29. R.L. Boxman, D.M. Sanders and P.J. Martin, “Handbook of Vacuum Arc Science Technology: Fundamentals and Applications”, Noyes Publications, New Jersey, USA (1995), P.P, 404.
30. Andres Gary, Society of vacuum 20 (2000).
31. 丁南宏,真空技術與應用,國家圖書館(2003), 423.
32. 張秉書,以非平衡磁控濺鍍法製備TiN硬質薄膜之研究,國立臺灣師範大學工業教育研究所,(2003)。
33. J.A.Thornton,J.V.S.T. 11 (4) (1974) 666.
34. Frank H. W. Loffler, Surface and Coatings Technology, 68–69(1994)729–740.
35. Ye Xu, Liuhe Li, Xun Cai, Paul K. Chu, “Hard nanocomposite Ti–Si–N films prepared by DC reactive magnetron sputtering using Ti–Si mosaic target”, Surface & Coatings Technology 201 (2007) 6824–6827.
36. Sheng-Min Yang, Yin-Yu Chang, Da-Yung Wang, Dong-Yih Lin, WeiTe Wua, “Mechanical properties of nano-structured Ti-Si-N films synthesized by cathodic arc evaporation”, Journal of Alloys and Compounds 440 (2007) 375–379.
37. S. Veprek, “Conventional and new approaches towards the design of novel superhard materials”, Surface & Coatings Technology, 97 (1997) 15–22.
38. Z.T. Yang, B. Yang, L.P. Guo, D.J. Fu, “Effect of bias voltage on the structure and hardness of Ti-Si-N composite coatings synthesized by cathodic arc assisted middle-frequency magnetron sputtering”, Journal of Alloys and Compounds 473 (2009) 437–441.
39. M. Nose, Y. Deguchi, T. Nae, E. Honbo, T. Nagae, K. Nogi, “Influence of sputtering conditions on the structure and properties of Ti–Si–N thin films prepared by r.f.-reactive sputtering”, Surface and Coatings Technology 174–175 (2003) 261–265.
40. F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J.P. Riviere, A. Cavaleiro and E. Alves, “Characterisation of Ti1−xSixNy nanocomposite films”, Surface Coating Technology, 133-134 (2000) 307-313.
41. F. Vaz, L. Rebouta, B. Almeida, P. Goudeau, J. Pacaud, J.P. Riviere and J. Bessa e Sousa, “Structural analysis of Ti1−xSixNy nanocomposite films prepared by reactive magnetron sputtering”, Surface Coating Technology, 120-121 (1999) 166-172.
42. Hisashi Watanabe, Yutaka Sato , Chaoyin Nie , Akiro Ando , Saburo Ohtani, Nobuya Iwamoto, “The mechanical properties and microstructure of Ti–Si–N nanocomposite films by ion plating”, Surface and Coatings Technology 169 –170 (2003) 452–455.
43. C.H. Zhang, X.C. Lu, H. Wang, J.B. Luo, Y.G. Shen, K.Y. Li, “Microstructure, mechanical properties, and oxidation resistance of nanocomposite Ti–Si–N coatings”, Applied Surface Science 252 (2006) 6141–6153.
44. M. Diserens, J. Patscheider, F. Lévy, “Microstructure, mechanical properties, and oxidation resistance of nanocomposite Ti–Si–N coatings”, Surface and Coatings Technology 120–121 (1999) 158.
45. S.K. Choi, F.J.J. Van Loo, G.F. Bastin, R. Metselaar, J. Am. Ceram. Soc. 78 (2) (1995) 313.
46. J.B. Choi, K. Cho, M.H. Lee, K.H. Kim, Thin Solid Films 447–448 (2004) 365–370.
47. P. Steyer, D. Pilloud, J.F. Pierson, J.-P. Millet, M. Charnay, B. Stauder, P. Jacquot, “Oxidation resistance improvement of arc-evaporated TiN hard coatings by silicon addition”, Surface and Coatings Technology, 201 (2006) 4158–4162.
48. D. Pilloud, J.F. Pierson, P. Steyer, A. Mege, B. Stauder, P. Jacquot, “Use of silane for the deposition of hard and oxidation resistant Ti–Si–N coatings by a hybrid cathodic arc and chemical vapour process”, Materials Letters 61 (2007) 2506–2508.
49. D. Pilloud, J.F. Pierson, M.C. Marco de Lucas, A. Cavaleiro, “Study of the structural changes induced by air oxidation in Ti–Si–N hard coatings”, Surface & Coatings Technology 202 (2008) 2413–2417.
50. D. Pilloud, J.F. Pierson, M.C. Marco de Lucas, M. Alnot, “Stabilisation of tetragonal zirconia in oxidized Zr–Si–N nanocomposite coatings”, Applied Surface Science 229 (2004) 132–139.
51. K.H. Kim, B.H. Park, Chem. Vapor Deposition 5 (6) (1999) 275.
52. Jun Bo Choi , Kurn Cho , Mi-Hye Lee , Kwang Ho Kim, “Effects of Si content and free Si on oxidation behavior of Ti–Si–N coating layers”, Thin Solid Films 447 –448 (2004) 365–370.
53. Sudeep Abraham, Eun Young Choi, Namhyun Kang, Kwang Ho Kim, “Microstructure and mechanical properties of Ti-Si-C-N films synthesized by plasma-enhanced chemical vapor deposition”, Surface & Coatings Technology 202 (2007) 915–919.
54. Yan Guo, Shengli Ma, Kewei Xu, “Effects of carbon content and annealing temperature on the microstructure and hardness of super hard Ti–Si–C–N nanocomposite coatings prepared by pulsed d.c. PCVD”, Surface & Coatings Technology 201 (2007) 5240–5243.
55. S.L. Ma, D.Y. Ma, Y. Guo, B. Xu, G.Z. Wu, K.W. Xu, Paul K. Chu, “Synthesis and characterization of super hard, self-lubricating Ti–Si–C–N nanocomposite coatings”, Acta Materialia 55 (2007) 6350–6355.
56. Ronghua Wei, “Plasma enhanced magnetron sputter deposition of Ti–Si–C–N based nanocomposite coatings”, Surface & Coatings Technology 203 (2008) 538–544.
57. Jun-Ha Jeon, Sung Ryong Choi, Won Sub Chung, Kwang Ho Kim, “Synthesis and characterization of quaternary Ti–Si–C–N coatings prepared by a hybrid deposition technique”, Surface & Coatings Technology 188–189 (2004) 415– 419.
58. J.T. Ok, I-W. Park, J.J. Moore, M.C. Kang, K.H. Kim, Surface & Coatings Technology 200 (2005) 1418.
59. K.H. Kim, J.T. Ok, S. Abraham, Y.-R. Choi, I.-W. Park, J.J. Moore, Surface & Coatings Technology 201 (2006) 4185.
60. J. Tagadoum, H. Houmid- Bennani, D. Mairey, J. Eur. Ceram. Soc. 18 (1998) 553.
61. D.Y. Ma, S.L. Ma, K.W. Xu, Thin Solid Films 496 (2006) 438.
62. S. Veprˇek, M. Haussmann, Li Shizhi, “Proceedings of the 13th International Conference on CVD”, Los Angeles, CA, 1996, Electrochemical Society Proceedings, 96–5(1996)619.
63. Ming-Sheng Leu, B.F. Chen, S.Y. Chen, Y.W. Lee, W.C. Lih, “Properties of (Ti,Al)N coatings deposited by the magnetic filter cathodic arc”, Surface and Coatings Technology 133–134 (2000) 319–324.
64. Andre´ Anders, “Approaches to rid cathodic arc plasmas of macro- and nanoparticles: a review”, Surface and Coatings Technology 120–121 (1999) 319–330.
65. 蘇青森,實用真空技術 (2003).
66. Yukihiro Kobayashi, Kazuhiro Fukada, “Characterization of swollen lamellar phase of dimyristoylphosphatidylcholine–gramicidin A mixed membranes by DSC, SAXS, and densimetry”, Biochimica et Biophysica Acta 1371 (1998) 363–370.
67. B.E Warren, X-Ray Diffraction, 1st edn., Addison-Wesley Pub., 1969, Reading.
68. C. Mendibide, P. Steyer, C. Esnouf, P. Goudeau,T, D. Thiaudie`re, M. Gailhanou, J. Fontaine, “X-ray diffraction analysis of the residual stress state in PVD TiN/CrN multilayer coatings deposited on tool steel”, Surface & Coatings Technology 200 (2005) 165– 169.
69. Bulu Pradhan, B. Bhattacharjee, “Performance evaluation of rebar in chloride contaminated concrete by corrosion rate”, Construction and Building Materials 23 (2009) 2346–2356.
70. W. Heinke, A. Leyland, A. Matthews, G. Bery, C. Friedrich, E.Broszeit, Thin Solid Films, 270 (1995) 431-438.
71. D.J.Gardiner, P.R.Graves, Ed.Practical Raman Spectroscopy, Springer-Verlag, Berlin (1989).
72. W.Snetaka, J.T.Yates. Jr. Plenum Surface Infrared and Raman Spectroscopy Methods and Applications, (1995).
73. R.J.H Clark and R.E. Hester, “Advances In Infrared and Raman Spectroscopy”, John Wiley & Sons (1995).
74. JCPDS #65-0965 #73-1774.
75. D.V. Shtansky, A.N. Sheveyko, D.I. Sorokin, L.C. Lev, B.N. Mavrin, Ph.V. Kiryukhantsev-Korneev, “Structure and properties of multi-component and multilayer TiCrBN/WSex coatings deposited by sputtering of TiCrB and WSe2 targets”, Surface & Coatings Technology 202 (2008) 5953–5961.
76. Jingxian Zhang, Liping Duan, Dongliang Jiang, Qingling Lin, Mikio Iwasa, “Dispersion of TiN in aqueous media”, Journal of Colloid and Interface Science 286 (2005) 209–215.
77. S.H.N. Lim, D.G. McCulloch, M.M.M. Bilek, D.R. McKenzie, J. du Plessis, M.V. Swain, R. Wuhrer, “The effect of plasma immersion ion implantation on the contact pressure and composition of titanium nitride thin films”, Surface & Coatings Technology 201 (2006) 396–400.
78. E. Varesi, G. Pavia, A. Zenkevich, Yu. Lebedinskii, P. Besana, A. Giussani, A. Modelli, “Structural and physical analysis on MOCVD Ti–Si–N films”, Journal of Physics and Chemistry of Solids 68 (2007) 1046–1051.
79. Li Chen, Yong Du, Ai J. Wang, She Q. Wang, Shu Z. Zhou, “Effect of Al content on microstructure and mechanical properties of Ti–Al–Si–N nanocomposite coatings”, Int. Journal of Refractory Metals & Hard Materials xxx (2009) xxx–xxx.
80. J. Lin, B. Mishra, J.J Moore, M. Pinkas, W.D. Sproul, “Structure and properties of Ti–B–C–N nanocomposite coatings synthesized using pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) ”, Surface & Coatings Technology 203 (2008) 588–593.
81. JCPDS #89-5009 #87-0633 #89-3828.
82. ZHANG Rui-qian, LIU Yao-guang, HUANG Ning-kang, “Effects of Hydrogen Ion Implantation on TiC-C Coating of Stainless Steel”, JOURNAL OF IRON AND STEEL RESEARCH, INTERNATIONAL. 2008, 15(4) : 77-81.
83. Lei Zhao, Qing Jiang, Jianshe Lian, “Visible-light photocatalytic activity of nitrogen-doped TiO2 thin film prepared by pulsed laser deposition”, Applied Surface Science 254 (2008) 4620–4625.
84. P. Jedrzejowski, J. Cizek, A. Amassian, J.E. Klemberg-Sapieha, J. Vlcek, L. Martinu, “Mechanical and optical properties of hard SiCN coatings prepared by PECVD”, Thin Solid Films 447–448 (2004) 201–207.
85. K. Ajito, J.P.H. Sukamto, L.A. Nagahara, K. Hashimoto, A. Fujishima, “Combined Raman and photoelectrochemical imaging system. Application to TiO2 films grown anodically on Ti-Ag alloy”, Journal of Electroanalytical Chemistry 386 (1995) 229–233.
86. JCPDS #89-4920 #89-4921.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top