跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:駱煒翔
研究生(外文):Wei-Hsiang Luo
論文名稱:化學鍍浴沉積法製備ZnO與ZnMnO透明導電氧化物薄膜之研究
論文名稱(外文):Preparation and Properties of the Zinc Oxide andManganese-Doped Zinc Oxide by Chemical Bath Deposition
指導教授:方昭訓
指導教授(外文):Jau-Shiung Fang.
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:134
中文關鍵詞:氧化鋅化學鍍浴沉積法透明導電薄膜稀磁半導體
外文關鍵詞:zinc oxidemanganesechemical bath depositiontransparent conducting oxidediluted magnetic semiconductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分為兩個部分,第一部份是探討ZnO透明導電薄膜,第二部分是探討在最佳化條件的ZnO透明導電薄膜中,摻雜Mn,合成稀磁性半導體ZnMnO薄膜。

第一部份:
本研究以化學鍍浴沉積法(Chemical Bath Deposition, CBD)在康寧玻璃Eagle2000玻璃基材上製備低電阻率和高穿透率的氧化鋅(ZnO)薄膜,並探討在不同析鍍條件下對薄膜的晶體結構、導電特性、光學性質與表面形貌的影響。實驗利用霍爾量測系統(HMS)量測電性、X光繞射儀(XRD)分析晶體結構、場發射掃描式電子顯微鏡(FE-SEM)觀察表面形貌、原子力顯微鏡(AFM)分析表面粗糙度與可見光分光光譜儀(UV-Vis)量測穿透率。最佳製程參數在Ar+H2氣氛下以600oC熱處理後之薄膜,所得的最佳電阻率為2.91×10-2 Ω cm,載子濃度為7.43×1018 cm-3,電子遷移率為2.97×101 cm2/ V•sec,平均穿透率可達81.2%和能隙值為3.23 eV。研究顯示利用化學水浴沉積法,藉由仔細的調整析鍍參數,成功製備出具有低電阻和高穿透率的氧化鋅薄膜,且有潛力應用在連續式製程。


第二部份:
本研究以最佳化條件的ZnO透明導電薄膜中,摻雜Mn,合成稀磁性半導體ZnMnO薄膜,探討對ZnMnO薄膜之成分組成、晶體結構、導電特性、光學性質、表面形貌與磁性質之影響。實驗利用電子微探儀(EPMA)分析成分組成、霍爾量測系統(HMS)量測電性、X光繞射儀(XRD)分析晶體結構、場發射掃描式電子顯微鏡(FE-SEM)觀察表面形貌、原子力顯微鏡(AFM)分析表面粗糙度、可見光分光光譜儀(UV-Vis)量測穿透率與振動試樣磁力計(VSM)量測磁滯曲線。最佳製程參數摻雜Mn含量為4.02 at.%,在Ar+H2氣氛下以600oC熱處理後之薄膜,所得的最佳電阻率為5.84×10-2 Ω cm,載子濃度為1.12×1019 cm-3,電子遷移率為9.52 cm2/ V•sec,平均穿透率可達75.6%和能隙值為3.30 eV,飽和磁化量為21 emu/c.c.,剩餘磁化量為2.605 emu/c.c.,矯頑磁力為45.6979 Oe。研究顯示利用化學鍍浴沉積法,藉由摻雜Mn,成功製備出具有低電阻、高穿透率與磁性的ZnMnO薄膜,以期未來能應用於奈米尺寸自旋電子元件。
The first part of this study is to discuss the properties of CBD-prepared zinc oxide films. The second part is to elucidate the properties of manganese-doped zinc oxide prepared by an optimum deposition parameter.

Zinc oxide thin films with low resistivity and high transparency were prepared on cleaned Corning Eagle2000 glass substrates by chemical bath deposition (CBD); and the effects of deposition parameters on the structural, electrical and optical properties of the films were investigated. The changes in structure, resistivity, and transmittance were studied using Hall measure system (HMS), x-ray diffraction (XRD), Field emission scanning electron mictoscope (FE-SEM), Atomic Force Microscope(AFM), and spectrophotometer (UV-Vis), respectively. The electrical and optical properties of the thin film had a resistivity of 2.91×10-2 Ωcm, transmittance of 81.2%, and bandgap energy of 3.23 eV in the visible range when the film was annealed in Ar+H2.


Manganese-Doped Zinc Oxide was prepared by an optimum deposition parameter using Chemical Bath Deposition (CBD); and the effect of manganese-doped content on the structural, electrical, optical, and magnetic properties of the film were also investigated. The electrical, optical and magnetic properties of the thin film had a resistivity of 5.84×10-2 Ωcm, transmittance of 75.6%, bandgap energy of 3.30 eV in the visible range, saturation magnetization of 21 emu/c.c., remanent magnetization of 2.605 emu/c.c., and coercivity of 45.6979 Oe when the film (Mn=4.02 at.%) was annealed in Ar+H2. The results revealed that a superior zinc-based oxide film can be prepared using chemical bath deposition by carefully adjusting the manganese-doped content, which make the process potential to be used on a roll-to-roll-process.
中文摘要 ………………………………………………………………i
英文摘要 ………………………………………………………………iii
致謝……………………………………………………………………v
目錄……………………………………………………………………vi
表目錄…………………………………………………………………x
圖目錄…………………………………………………………………xi
第一章、前言…………………………………………………………1
1.1 前言……………………………………………………… 1
第二章、研究背景與動機………………………………………………3
2.1 透明導電氧化物…………………………………………3
2.1.1 TCO………………………………………………………3
2.1.2 ZnO………………………………………………………3
2.2 稀磁半導體………………………………………………5
2.2.1 DMS……………………………………………………5
2.2.2 ZnMnO…………………………………………………5
2.3 化學水浴沉積法(CBD)…………………………………7
2.3.1 化學水浴沉積法沉積氧化物之化學反應機制………9
2.3.2 均質成核與異質成核…………………………………11
2.4 研究動機…………………………………………………13
第三章、實驗方法與步驟………………………………………………15
3.1 實驗流程…………………………………………………15
3.2 實驗化學藥品與材料準備………………………………17
3.2.1 基板的清洗……………………………………………17
3.2.2 實驗參數的設定………………………………………17
3.2.3 熱處理…………………………………………………21
3.3 實驗設備…………………………………………………22
3.3.1 CBD ZnO/ZnMnO實驗設備…………………………22
3.3.2 使用藥品………………………………………………22
3.4 分析儀器介紹……………………………………………24
3.4.1 表面輪廓儀(Alpha-Step)………………………………24
3.4.2 X光繞射儀(XRD)…………………………………24
3.4.3 霍爾量測系統(HMS)…………………………………24
3.4.4 電子微探儀……………………………………………25
3.4.5 紫外光-可見光-近紅外線光譜儀(UV-VIS-NIR
Spectrophotometer)…………………………………26
3.4.6 場發射掃描式電子顯微鏡(FE-SEM)…………………26
3.4.7 原子力顯微鏡(AFM)…………………………………27
3.4.8振動試樣磁力計(VSM)………………………………27
第四章、結果與討論……………………………………………………33
4.1 ZnO結構分析……………………………………………33
4.1.1 不同Zn(NO3)2濃度之結構分析比較…………………33
4.1.2 不同DMAB濃度之結構分析比較…………………34
4.1.3 不同反應溫度之結構分析比較………………………35
4.1.4 不同反應時間之結構分析比較………………………36
4.2 ZnO電性分析…………………………………………37
4.2.1 不同Zn(NO3)2濃度之薄膜電特性分析比較…………37
4.2.2 不同DMAB濃度之薄膜電特性分析比較…………38
4.2.3 不同反應溫度之薄膜電特性分析比較………………39
4.2.4不同反應時間之薄膜電特性分析比較………………40
4.3 ZnO光學特性分析………………………………………41
4.3.1 不同Zn(NO3)2濃度之光學特性分析比較……………41
4.3.2 不同DMAB濃度之光學特性分析比較……………42
4.3.3 不同反應溫度之光學特性分析比較…………………44
4.3.4 不同反應時間之光學特性分析比較…………………46
4.4 ZnO表面形貌分析………………………………………47
4.4.1 FE-SEM表面形貌分析………………………………47
4.4.2 AFM表面形貌分析……………………………………48
4.5 ZnMnO薄膜之組成成分………………………………77
4.6 ZnMnO結構分析………………………………………77
4.6.1 不同摻雜含量之結構分析比較………………………77
4.7 ZnMnO電性分析………………………………………80
4.7.1不同摻雜含量之薄膜電特性分析比較………………80
4.8 ZnMnO光學特性分析…………………………………82
4.8.1 不同摻雜含量之光學特性分析比較…………………82
4.8.2不同摻雜含量之光學能隙變化比較…………………84
4.9 ZnMnO磁性分析………………………………………86
4.9.1 磁滯曲線之飽和磁化量、剩餘磁化量與矯頑磁力分析
比較……………………………………………………86
4.10 表面形貌分析…………………………………………89
4.10.1 FE-SEM表面形貌分析………………………………89
4.10.2 FE-SEM橫截面分析…………………………………90
4.10.3 AFM表面形貌分析…………………………………90
第五章、結論…………………………………………………………116
第六章、未來工作與建議……………………………………………118
參考文獻………………………………………………………………119
作者自述………………………………………………………………127
英文文章………………………………………………………………128


表目錄
表3.1 不同硝酸鋅濃度下沉積ZnO薄膜……………………………19
表3.2 不同DMAB濃度下沉積ZnO膜……………………………19
表3.3 不同析鍍溫度下沉積ZnO薄膜………………………………19
表3.4 不同析鍍時間下沉積ZnO薄膜………………………………19
表3.5 ZnMnO之三種不同摻雜量……………………………………20
表3.6 分析儀器與型號………………………………………………23
表4.1 ZnMnO初鍍膜經EPMA分析之成分組成……………………92


圖目錄
圖2.1 理論預測能隙與居禮溫度的關係圖……………………………7
圖2.2 化學浴沉積法之反應裝置示意圖………………………………8
圖3.1 製備ZnO流程圖………………………………………………15
圖3.2 製備ZnMnO流程圖……………………………………………16
圖3.3 敏化、活化處理圖………………………………………………18
圖3.4 主鍍浴析鍍圖…………………………………………………18
圖3.5 表面輪廓儀(Alpha-Step) ……………………………………28
圖3.6 X光繞射儀………………………………………………………29
圖3.7 霍爾效應量測示意圖…………………………………………29
圖3.8 霍爾量測系統…………………………………………………30
圖3.9 電子微探儀 (清華大學) ………………………………………30
圖3.10 紫外光-可見光-近紅外線光譜儀……………………………31
圖3.11 場發射掃描式電子顯微鏡(國立中興大學) …………………31
圖3.12 原子力顯微鏡…………………………………………………32
圖3.13 振動試樣磁力計(國立中正大學) ……………………………32
圖4.1 於不同Zn(NO2)3濃度(a) 0.245 M (b) 0.25 M (c) 0.255 M下,所製備之ZnO薄膜經過Ar + H2 氣氛400 - 600oC RTA熱處理30
分鐘的XRD繞射圖……………………………………………49
圖4.2 於不同DMAB濃度(a) 0.3 M (b) 0.35 M (c) 0.4 M下,所製備之ZnO薄膜經過Ar + H2 氣氛400 - 600oC RTA熱處理30分鐘的
XRD繞射圖……………………………………………………51
圖4.3 於不同析鍍溫度(a) 60oC (b) 70oC (c) 80oC下,所製備之ZnO薄膜經過Ar + H2 氣氛400 - 600oC RTA熱處理30分鐘的XRD
繞射圖…………………………………………………………53
圖4.4 於不同析鍍時間(a) 60 min (b) 90 min (c) 120 min下,所製備之ZnO薄膜經過Ar + H2 氣氛400 - 600oC RTA熱處理30分鐘的
XRD繞射圖……………………………………………………55
圖4.5 於不同Zn(NO2)3濃度(a) 0.245 M (b) 0.25 M (c) 0.255 M下,所製備之ZnO薄膜經過Ar + H2 氣氛400 - 600oC的RTA熱處理
30分鐘之霍爾量測結果繞射圖………………………………57
圖4.6 於不同DMAB濃度(a) 0.3 M (b) 0.35 M (c) 0.4 M下,所製備之ZnO薄膜經過Ar + H2 氣氛400 - 600oC的RTA熱處理30分鐘
之霍爾量測結果繞射圖………………………………………59
圖4.7 於不同析鍍溫度(a) 60oC (b) 70oC (c) 80oC下,所製備之ZnO薄膜經過Ar + H2 氣氛400 - 600oC的RTA熱處理30分鐘之霍
爾量測結果繞射圖……………………………………………61
圖4.8 於不同析鍍時間(a) 60 min (b) 90 min (c) 120 min下,所製備之ZnO薄膜經過Ar + H2 氣氛400 - 600oC的RTA熱處理30分鐘
之霍爾量測結果繞射圖………………………………………63
圖4.9 於不同Zn(NO2)3濃度(a) 0.245 M (b) 0.25 M (c) 0.255 M下,所製備之ZnO薄膜經過Ar + H2 氣氛400 - 600oC的RTA熱處理
30分鐘之光學穿透率圖繞射圖………………………………65
圖4.10 於不同DMAB濃度(a) 0.3 M (b) 0.35 M (c) 0.4 M下,所製備之ZnO薄膜經過Ar + H2 氣氛400 - 600oC的RTA熱處理30
分鐘之光學穿透率圖繞射圖…………………………………67
圖4.11 於不同析鍍溫度(a) 60oC (b) 70oC (c) 80oC下,所製備之ZnO薄膜經過Ar + H2 氣氛400 - 600oC的RTA熱處理30分鐘之光
學穿透率圖繞射圖……………………………………………69
圖4.12 於不同析鍍時間(a) 60 min (b) 90 min (c) 120 min下,所製備之ZnO薄膜經過Ar + H2氣氛400 - 600oC的RTA熱處理30
分鐘之光學穿透率圖繞射圖…………………………………71
圖4.13 ZnO薄膜(a) as-dep. (b) 400oC (c) 500oC (d) 600oC Ar+H2氣氛中熱處理,時間為30分鐘的FE-SEM試片表面貌…………73
圖4.14 ZnO薄膜經過600oC於Ar+H2氣氛中熱處理,時間為30分鐘
的FE-SEM試片橫截面圖(a)低倍橫截面圖(b)高倍橫截面…………75
圖4.15 ZnO薄膜(a) 初鍍膜 (b) Ar+H2氣氛中熱處理600oC,熱處理
時間為30分鐘的AFM表面形貌(1 x 1 μm2) ………………76
圖4.16 Mn含量為0 at.%, 4.02 at.%, 6.05 at.% 與7.10 at.%所製備ZnMnO初鍍膜之XRD分析圖………………………………93
圖4.17 在Mn含量為(a) 0 at.%, (b) 4.02 at.%, (c) 6.05 at.% 與 (d) 7.10 at.%所製備之ZnMnO薄膜,經過400 - 600oC的RTA在Ar+H2環境中熱處理30分鐘之XRD分析圖…………………………94
圖4.18 在Mn含量為(a) 0 at.%, (b) 4.02 at.%, (c) 6.05 at.% 與 (d) 7.10 at.%所製備之ZnMnO薄膜,經過400 - 600oC在Ar+H2環境中熱處理30分鐘的霍爾量測結果………………………………96
圖4.19 Mn含量為(a) 0 at.%, (b) 4.02 at.%, (c) 6.05 at.% 與 (d) 7.10 at.%製備的ZnMnO薄膜,經過400 - 600oC在Ar+H2環境中熱
處理30分鐘的光學穿透率圖…………………………………98
圖4.20 Mn含量為(a) 0 at.%, (b) 4.02 at.%, (c) 6.05 at.% 與 (d) 7.10 at.%製備的ZnMnO薄膜,經過400 - 600oC在Ar+H2環境中熱
處理30分鐘的光學能隙變化圖……………………………100
圖4.21 Mn含量為(a) 0 at.% (b) 4.06∼7.10 at.%製備的ZnMnO初鍍膜在不同Mn含量經VSM量測所得的磁滯曲線………………102
圖4.22 為初鍍膜在不同Mn含量與飽和磁化量、剩餘磁化量與矯頑
磁力之關係圖…………………………………………………103
圖4.23 Mn含量為(a) 4.02 at.%, (b) 6.05 at.% 與 (c) 7.10 at.%製備的ZnMnO薄膜,經過400 - 600oC的RTA在Ar+H2環境中熱處理30分鐘後經VSM量測所得的磁滯曲線…………………104
圖4.24 Mn含量為(a) 4.02 at.%, (b) 6.05 at.% 與 (c) 7.10 at.% ZnMnO薄膜之飽和磁化量、剩餘磁化量、矯頑磁力與熱處理溫度之關係圖……………………………………………………………106
圖4.25 Mn含量為(a) 0 at.%, (c) 4.02 at.%, (e) 6.05 at.% 與 (g) 7.10 at.%製備的ZnMnO初鍍膜經FE-SEM所觀察的表面形貌…108
圖4.26 Mn含量為(a) 0 at.%, (c) 4.02 at.%, (c) 6.05 at.% 與 (d) 7.10 at.%製備的ZnMnO薄膜,在Ar+H2氣氛下施以熱處理
600°C持溫30分鐘的FE-SEM試片表面形…………………………110
圖4.27 Mn含量為(a) 0 at.%, (b) 4.02 at.%, (c) 6.05 at.% 與 (d) 7.10 at.%製備的ZnMnO薄膜經過600oC於Ar+H2氣氛中熱處理,
時間為30分鐘的FE-SEM試片橫截面………………………112
圖4.28 ZnMnO薄膜(a) Mn含量為0 at.%初鍍膜, (b) Ar+H2氣氛中熱處理600oC,熱處理時間為30分鐘的Mn含量為0 at.%薄膜, (c)
Mn含量4.02 at.%初鍍膜, (d) Ar+H2氣氛中熱處理600oC,熱處
理時間為30分鐘的Mn含量4.02 at.%薄膜之AFM表面形貌
(2 x 2 μm2) ……………………………………………………114
[1]W.B.Jackson, G.S.Herman, and R.L.Hoffman, “High-performance flexible zinc tin oxide field-effect transistors”, Appl. Phys. Lett. 87, 193503 (2005).
[2]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, ”The investigation of ZnO based transparent thin film transistor and photodetector”, Nature (London) 432, 488 (2004).
[3]David Honga and John F.Wager, “Passivation of zinc–tin–oxide thin-film transistors”, J. Vac. Sci. Technol. B 23, L25 (2005).
[4]Y. J. Li, Y. W. Kwon, M. Jones, Y. W. Heo, J. Zhou, S. C. Luo, P. H. Holloway, E. Douglas, D. P. Norton, Z. Park and S. Li, Semicond, “Zinc oxide bulk, thin films and nanostructures”, Sci. Technol. 20, 720 (2005).
[5]K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, “The investigation of ZnO based transparent thin film transistor and photodetector”, Jpn. J. Appl. Phys. 45, 4303 (2006).
[6]C. S. Xue, Z. H. Dong, H. Z. Zhuang, H. Y. Gao, Y. A. Liu, and Y. X.Wu, “PRICM 5: The fifth pacific rim international conference onadvanced materials and processing”, Mater. Sci. Forum. 475, 4175 (2005).
[7]T. S. Jeong , M. S. Han , J. H. Kim , K. Y. Lim , C. I. Youn, and J. Korean,“Equivalent-Circuit Analysis for the Electroluminescence-Efficiency Problem of InGaN/GaN Light-Emitting Diodes”, Phys. Soc. 46 , 968 (2005).
[8] R. Armitage, Q. Yang, and E. R. Weber, “Analysis of the carbon-related "blue" luminescence in GaN”, J. Appl. Phys. 97, 48 073524 (2005)
[9] D. Fu, Y. S. Park, G. N. Panin, and T. W. Kang, “Nonlithographic Random Masking and Regrowth of GaN Microhillocks to Improve Light-Emitting Diode Efficiency”, Jap. J. Appl. Phys. 244, L342 (2005).
[10] R. Jansen,“Silicon takes a spin”, Nature Physics 3(8), 521 (2007).
[11] P. Sharma, “How to Create a Spin Current”, Science 307, 531 (2005).
[12] D. Chiba, M. Yamanouchi, F. Matsukura and H. Ohno, “Electrical Manipulation of Magnetization Reversal in a Ferromagnetic Semiconductor”, Science 301 , 943 (2003).
[13] K. L. Chopra, S. Major and D.K. Pandya, “Properties of InGaN deposited on Glass at Low Temperature”, Thin Solid Films 102, 1(1983) .
[14] S. Major, S. Mumar, M. Bhatnagar and K.L. Chopra, “Study on the Luminescence Characteristics of ZnO Thin Film”, Appl. Phys. Letts. 49, 394 (1986).
[15] H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Semiconducting Transparent Thin Films”, Institute of Physics Publication, chapter 3, (1995).
[16] N. W. E. E. Glu, C. Corla, and G. S. L. Ian, “MOCVD growth and. SAW properties of epitaxial ZnO thin films”, IEEE T. Ultrason. Ferr. 48, 1389 (2001).
[17] E. Dumont, B. Dugnoille, and S. Bienfait, “Simultaneous determination of the optical properties and of the structure of r.f.-sputtered ZnO thin films”, Thin Solid Films 353, 93 (1999).
[18] C.H. Lee and L.Y. Lin, “Characteristics of spray pyrolytic ZnO thin films”, Appl. Surf. Sci. 92, 163 (1996).
[19] S.H. Bae, S.Y. Lee, H.Y. Kim, and S. Im, “Effects of post-annealing treatment on the light emission properties of ZnO thin films on Si.”, Opt . Mater. 17, 327 (2001).
[20] A. Jim-nez-Gonzfilez, R. Sufirez-Parra, “Effect of heat treatment on the properties of ZnO thin films prepared by successive ion layer adsorption and reaction (SILAR)”, J. Cryst. Growth 16, 649 (1996).
[21] D.H. Bao, A. Kuang, and H. Gu, “Sol-Gel-deried c-axis oriented ZnO thin films”, Thin Solid Films 312, 37 (1998).
[22] X.D. Gao, X.M. Li, and W.D. Yu, “Preparation structure and ultraviolet photoluminescence of ZnO films by a novel chemical method” , J. Sol. Sta. Chem. 177, 3830 (2004).
[23] A. Mauger and C. Godart, “The magnetic, optical, and transport properties of representatives of a class of magnetic semiconductors: The europium chalcogenides”, Physics Reports 141, 51 (1986).
[24] J. K. Furdyna, “Diluted magnetic semiconductors”, J. Appl. Phys. 282, 1660 (1998).
[25] H. Munekata, H. Ohno, S.von Molnar, Armin Segmuller, L. L. Chang, and L. Esaki, “Diluted magnetic III-V semiconductors” Phys. Rev. Lett. 63, 1849 (1989).
[26] H. Ohno, “A ferromagnetic III–V semiconductor: (Ga,Mn)As ”, J. Magn. Magn. Mater. 200, 110(2000).
[27] G. A. Prinz, “Magnetoelectronics”, Science 282, 1660 (1998).
[28] F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, “Transport properties and origin of ferromagnetism in (Ga,Mn)As”, Phys. Rev. B 57, R2037 (1998).
[29] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs”, Appl. Phys. Lett. 69, 363 (1996).
[30] H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L. L. chang, and L. Esaki, “Diluted magnetic III-V semiconductors”, Phys. Rev. Lett. 63, 1849 (1989).
[31] H. Akai, “Ferromagnetism and Its Stability in the Diluted Magnetic Semiconductor (In, Mn)As”, Phys. Rev. Lett. 81, 3002 (1998).
[32] H. Ohno, H. Munekata, T. Penneys S. von Molnar, and L. L. chang, “Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors”, Phys. Rev. Lett. 68, 2664 (1992).
[33] S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takagi, and H. Munekata, Phys, “Ferromagnetic Order Induced by Photogenerated Carriers in Magnetic III-V Semiconductor Heterostructures of (In,Mn)As/GaSb”, Phys. Rev. Lett. 78, 4617 (1997).
[34] S. J. Han, “A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu”, Appl. Phys. Lett. 81, 4212 (2002).
[35] H. T. Lin and T. S. Chin, “Enhancement of ferromagnetic properties in Zn1–xCoxO by additional Cu doping”, Appl. Phys. Lett. 85, 621(2004).
[36] D. P. Norton, “Ferromagnetism in cobalt-implanted ZnO”, Appl. Phys. Lett. 83, 5488 (2003).
[37] D. P. Norton, “Ferromagnetism in Mn-implanted ZnO:Sn single crystals”, Appl. Phys. Lett. 82, 239 (2003).
[38] T. Dietl, “Ferromagnetic semiconductors”, Semicond. Sci. Technol. 17, 377 (2002).
[39] L. C. Moreno, J. W. Sandino, N. hernandez and G. gordillo, “pH Effect on the Deposition of CdS on ZnO and SnO2 :F Substrates by CBD Method”, Phys. Stat. Sol. 220, 289 (2000).
[40] P. O’Brien and J. McAleese, “Developing an understanding of the processescontrolling the chemical bath deposition of ZnS and CdS”, J. Mater. Chem. 8, 2309 (1998).
[41] Y. Matsumoto, U. Unal, N. Tanaka, A. Kudob and H. Kato, “Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts”, J. Sol. State Chem. 177, 4205 (2004).
[42] G. Hodes, “Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition”, Phys. Chem. Chem. Phys. 9, 2181 (2007).
[43] T. P. Niesen and M. R. D. Guire, “Review:deposition of ceramic thin films at low temperatures from aqueous solutions”, Solid State Ionics 151, 61 (2002).
[44] T. P. Niesen and M. R. D. Guire, “Review:Deposition of ceramic thin films at low temperatures from aqueous solutions”, J. of Electroceramics 6, 169 (2001).
[45] A. Ennaoui, M. Weber, R. Scheer and H. J. Lewerenz, “Chemical-bath ZnO buffer layer for CuInS2 thin-film solar cells”, Sol. Energ. Mat. Sol. C. 4, 277 (1998).
[46] M. Z. Najdoski and T. Todorovski, “A simple method for chemical bath deposition of electrochromic tungsten oxide films”, Mater. Chem. Phys. 104, 483 (2007).
[47] T. Todorovski and M. Najdoski, “The solution growth route and characterization of electrochromic tungsten oxide thin films”, Mater. Res. Bull. 42, 2025 (2007).
[48] H. Y. Xu, S. L. Xu, X. D. Li, H. Wang and H. Yan, “Chemical bath deposition of hausmannite Mn3O4 thin films”, Appl. Surf. Sci. 252, 4091 (2006).
[49] M. O. Lopez, A. A. Garcia, M. L. A. Aguilera and V. M. S. Resendiz, “Improved efficiency of the chemical bath deposition method during growth of ZnO thin films”, Mater. Res. Bull. 38, 1241 (2003).
[50] S. H. Yi, S. K. Choi, J. M. Jang, J.A. Kim and W. G. Jung, “Low-temperature growth of ZnO nanorods by chemical bath deposition”, J. Colloid. Interf. Sci. 313, 705 (2007).
[51] D. O. Eya, “Influence of thermal annealing on the structural and optical properties of lead oxide thin films prepared by chemical bath deposition technique”, The Pacific Journal of Science and Technology 7, 115 (2006).
[52] M. Izaki and T. Omi, “Transparent Zinc Oxide Films Chemically Prepared from Aqueous Solution”, J. Electrochem. Soc. 144, L3 (1997).
[53] H. Y. Xu, H. Wang, T. N. Jin and H. Yan, “Rapid fabrication of luminescent Eu:YVO4 films by microwave-assisted Chemical solution deposition”, Institute of Physics Publishing Nanotechnology 16, 65 (2005).
[54] T. Fukumura, “Magnetic properties of Mn-doped ZnO”, Appl. Phys. Lett. 78, 958 (2001).
[55] Z.W. Jin and Fukumura, “High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties”, Appl. Phys. Lett.78, 3824 (2001).
[56] 汪建民, 材料分析, 中國材料科學學會 (1998).
[57] U. Choppali, B. P. Gorman, and J. Lumin, “Structural and optical properties of nanocrystalline ZnO thin films synthesized by the citrate precursor route”, J. Lumin. 128, 1641(2008).
[58] W.F. Liu, G.T. Du, Y.F. Sun, J.M. Bian, Y. Cheng, T.P. Yang, Y.C. Chang, Y.B. Xu, “Effects of hydrogen flux on the properties of Al-doped ZnO films sputtered in Ar + H2 ambient at low temperature”, Appl. Surf. Sci. 253, 2999 (2007).
[59] M. Izaki and J. Katayama, “Characterization of Boron-Incorporated Zinc Oxide Film Chemically Prepared from an Aqueous Solution”, J. Electrochem. Soc. 147, 210 (2000).
[60] J.H. Ko, I.H. Kim, D. Kim, K.S. Lee, T.S. Lee, J.H. Jeong, B. Cheong, Y.J. Baik, and W.M. Kim, “Effects of ZnO addition on electrical and structural properties of amorphous SnO2 thin films”, Thin Solid Films 494, 42 (2006).
[61] N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue and Y. Shigesato, “Electrical and optical properties of amorphous indium zinc oxide films”, Thin Solid Films 496, 99 (2006).
[62] W.F. Liu, G.T. Du, Y.F. Sun, J.M. Bian, Y. Cheng, T.P. Yang, Y.C. Chang and Y.B. Xu, “Effects of hydrogen flux on the properties of Al-doped ZnO films sputtered in Ar + H2 ambient at low temperature”, Appl. Surf. Sci. 253, 2999 (2007).
[63] J.H. Ko, I.H. Kim, D. Kim, K.S. Lee, T.S. Lee, J.H. Jeong, B. Cheong, Y.J. Baik and W.M. Kim, “Effects of ZnO addition on electrical and structural properties of amorphous SnO2 thin films”, Thin Solid Films 494, 42 (2006).
[64] C. J. Gawlak and C.P. Aita, “The transmittance is well-known to depend mainly on the surface roughness, grain scattering, and impurity scattering centers of the film”, J. Vac. Sci. Technol. A1, 415 (1983).
[65] V. Gupta, and A. Mansingh, “Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film”, J. Appl. Phys. 80, 1063 (1996).
[66] R. Hong, J. Huang, H. He, Z. Fan, and J. Shao, “Influence of different post-treatments on the structure and optical properties of zinc oxide thin films”, Appl. Surf. Sci. 242, 346 (2005).
[67] H. Ko, W.P. Tai, K.C. Kim, S.H. Kim, S.J. Suh, Y.S. Kim, “Growth of Al-doped ZnO thin films by pulsed DC magnetron sputtering”, J. Cryst. Growth 277, 352 (2005).
[68] Y. J. Kim and H. J. Kim, “Trapped oxygen in the grain boundaries of ZnO polycrystalline thin films prepared by plasma-enhanced chemical vapor deposition”, Mater. Lett. 41, 159 (1999).
[69] V. R. Shinde, T. P. Gujar, and C. D. Lokhande, “Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study”, Mater. Chem. Phys. 96, 326 (2006).
[70] G. Sanon, R. Rup, and A. Mamsingh, “Growth and characterization of tin oxide films prepared by chemical vapour deposition”, Thin Solid Films 190, 287 (1990).
[71] T. Schuler and M. A. Aegerter, “Optical, electrical and structural properties of sol gel ZnO:Al coatings”, Thin Solid Films 351, 125 (1999).
[72] M.Ohring, The Materials Science of Thin Films, p.457 (Academic Press, San Diego ,CA ,1991).
[73] W. F. Liu, “Effects of hydrogen flux on the properties of Al-doped ZnO films sputtered in Ar + H2 ambient at low temperature”, Appl. Surf. Sci. 253, 2999 (2007).
[74] J. H. Ko, “Effects of ZnO addition on electrical and structural properties of amorphous SnO2 thin films”, Thin Solid Films 494, 42 (2006).
[75] R. Viswanatha, S. Sapra, S.S. Gupta, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sarma, “Synthesis and Characterization of Mn doped ZnO Nanocrystals”, J. Phys. Chem. B 108, 6303 (2004).
[76] M. J. Alam and D.C.Cameron, “Investigation of annealing effects on sol–gel deposited indium tin oxide thin films in different atmospheres”, Thin Solid Films 420, 76 (2002).
[77] H. Ko, W.P. Tai, K.C. Kim, S.H. Kim, S.J. Suh and Y.S. Kim, “Growth of Al-doped ZnO thin films by pulsed DC magnetron sputtering”, J. Cryst. Growth 277, 352 (2005).
[78] C. Guillén and J. Herrero, “Influence of oxygen in the deposition and annealing atmosphere on the characteristics of ITO thin films prepared by sputtering at room temperature”, Vacuum 80, 615 (2006)
[79] S. S. Lin, J. L. Huang and P. Sajgalik, “The properties of heavily Al-doped ZnO films before and after annealing in the different atmosphere”, Surf. Coat. Technol. 185, 254 (2004).
[80] D. Xu, Z. Deng, Y. Xu, J. Xiao, C. Liang, Z. Pei and C. Sun, “An anode with aluminum doped on zinc oxide thin films for organic light emitting devices”, Phys. Lett. A 346, 148 (2005).
[81] Z. Xueyun, G. Shihui, Y. Dongsheng, Z. Y. and X. Yuhua, “Ferromagnetism of MnxLiyZn1−x−yO films”, Appl. Surf. Sci. 254, 6428 (2008).
[82] J. Elanchezhiyan, K.P. Bhuvana, N. Gopalakrishnan and T. Balasubramanian, “Investigation on Mn doped ZnO thin films grown by RF magnetron sputtering”, Mater. Lett. 62, 3379 (2008).
[83] P. Sharma, A. Gupta, F.J. Owens, A. Inoue, and K.V. Rao, “Room temperature spintronic material—Mn-doped ZnO revisited”, J. Magn. Magn. Mater. 282, 115 (2004).
[84] N. Gopalkrishnan, J. Elanchezhiyan, K.P. Bhuvana, and T. Balasubramanian, “On the nucleation and growth of Zn1− xMnxO thin films grown by RF magnetron sputtering”, Scr. Mater. 58, 930 (2008).
[85] S. Karamat, S. Mahmood, J.J. Lin, Z.Y. Pan, P. Lee, T.L. Tan, S.V. Springham, R.V. Ramanujan and R.S. Rawat, “Structural, optical and magnetic properties of (ZnO)1−x(MnO2)x thin films deposited at room temperature”, Appl. Surf. Sci. 254, 7285 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊