跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 09:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝志先
研究生(外文):Chih-Hsien Hsieh
論文名稱:不同還原劑製備電極觸媒層對於PEMFC效能影響
論文名稱(外文):Preparation and performance of electcatalitic layer of MEA in PEMFC under the different reductant
指導教授:邱青煌
指導教授(外文):Ching-Huang Chiu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:燃料電池膜電極組(MEA)浸漬還原法熱壓壓製
外文關鍵詞:Fuel cellMEAHot-pressuringimpregnation-reduction
相關次數:
  • 被引用被引用:4
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文探討的是以含浸法還原Pt前驅物H2PtCl6,並用MWCNT做為金屬離子之載體。實驗中所使用的還原劑分別為乙二醇、甲酸、NaBH4。
在本實驗中,成功使用三種還原劑合成了Pt/CNT電極觸媒,並塗佈於陰陽兩極的Pt/CNT觸媒劑量約為3mg/cm2,最終製成MEA進行單電池測試。測試結果顯示當以低電流進行拉載,發現商用與自製觸媒效能反應並無太大差異;以高電流拉載時碳管製備的觸媒效能則較差,推測為Pt/C的活化表面積較大故觸媒反應的三相點較Pt/CNT多為主因。實驗結果以甲酸為還原劑製作的Pt/CNT電極觸媒有較好的輸出性能表現。
熱壓溫度、壓力及時間都會對製備出的MEA效能有影響。因此,有效控制上述變因,將是提升膜電極效能的重要條件。

關鍵字:燃料電池、膜電極組(MEA),浸漬還原法、熱壓壓製
Using impregnation-reduction method to prepare the electrodes is convenient, economic, and easily controlled. The objective of this research was to prepare the electrodes for proton exchange membrane fuel cells using Impregnation-reduction method with three different reductants. The process of this work was divided into two steps. The first step was to use Enhylene glycol, Formic acid, NaBH4 ehthylene glycol as the reductants respectively to reduce hexachlorplatinic acid into Pt nanoparticles. Dispersion stability of the Pt nanoparticles on multi-walled carbon nanotube was examined respectively by changing the reductants volumetric fractions and analysed by Field Emission Scanning Electron Microscopy (FESEM). The second was to prepare Membrane and Electrode Assembly(MEA) by appling the directly spraying catalyst on the membrane, which was then sandwiched with carbon papers, and hot pressed by changing temperature and pressure. The MEAs prepared by different ways were sandwiched with the bipolar plates to assemble a single fuel cell. Finally the fuel cell was tested on fuel cell station. The result indicated that the performance of MEA prepared by using Formic acid as the reductants was the better than using the other reductants.
The comparisons of performance for fuel cell in self-manufacturing MEA and commercial MEA indicated that the former outperforms within current density 1400 mA/cm2. It was proved that Impregnation-reduction method was available on the MEA of PEMFC by way of these test results.
Keywords;Fuel cell、MEA、Hot-pressuring、impregnation-reduction
摘要......................................................i
Abstract.................................................ii
致謝....................................................iii
目錄......................................................v
表目錄...................................................ix
圖目錄....................................................x
第1章 緒論.............................................1
1.1 前言.............................................1
1.2 文獻回顧.........................................2
1.2.1 觸媒製作.........................................2
1.2.2 碳載體研究.......................................6
1.2.3 疏水研究.........................................7
1.2.4 nafion膜相關研究.................................8
1.2.5 觸媒塗佈研究.....................................8
1.2.6 熱壓研究........................................10
1.3 研究目的........................................11
第2章 理論背景........................................12
2.1 燃料電池開發背景................................12
2.2 燃料電池種類....................................13
2.3 鹼性燃料電池(alkaline fuel cell,AFC):.......17
2.4 磷酸型燃料電池(phosphoric acid fuel cell,PAFC): ................................................17
2.5 熔熔碳酸鹽燃料電池(molten carbonate fuel cell,MCFC): ................................................18
2.6 固態氧化物燃料電池(solid oxide fuel cell,SOFC): ................................................19
2.7 直接醇類燃料電池(direct methanol fuel cell,DMFC):.................................................20
2.8 質子交換膜燃料電池(proton exchange membrane fuel cel,PEMFC):...........................................22
2.8.1 反應三相點......................................24
2.8.2 內部元件........................................26
2.8.3 觸媒............................................26
2.8.4 質子交換膜......................................28
2.8.5 氣體擴散層......................................31
2.8.6 雙極板與流場....................................32
2.9 極化............................................33
2.10 具載體型奈米金屬催化劑合成......................35
2.10.1 直接還原法......................................36
2.10.2 浸漬法..........................................37
2.10.3 化學還原法......................................37
2.10.4 醇類還原含浸法..................................37
2.10.5 膠體法..........................................38
2.10.6 微波法..........................................38
2.10.7 共沉澱法........................................39
2.10.8 UV輻射輔助晶化..................................39
2.10.9 微細胞法........................................40
2.11 觸媒載體-奈米碳管...............................41
2.11.1 碳管改質........................................42
2.11.2 碳黑與碳管之比較................................43
2.12 還原劑的選用....................................44
第3章 實驗設備........................................46
3.1 單電池測式機台..................................47
3.2 熱壓系統........................................49
3.3 場發射電子顯微鏡................................50
第4章 實驗流程........................................52
第5章 結果與討論......................................58
5.1 實驗變因........................................58
5.2 實驗結果........................................59
5.2.1 熱壓壓力........................................60
5.3 各觸媒輸出功率比較..............................61
5.3.1 乙二醇製備觸媒..................................62
5.3.2 甲酸為還原劑之觸媒..............................65
5.3.3 NaBH4製備觸媒...................................68
5.4 自製最佳觸媒與商用比較..........................71
第6章 結論與建議......................................73
6.1 結論............................................73
6.2 建議............................................74
參考文獻.................................................75
[1]Yong-Hun Cho, Sung Jong Yoo, Yoon-Hwan Cho, Hyun-Seo Park, In-Su Park, Joong Kee Lee, Yung-Eun Sung. ”Enhanced performance and improved interfacial properties of polymer electrolyte membrane fuel cells fabricated using sputter-deposited Pt thin layers” Electrochimica Acta 2008, Vol.53, 6111-6116.
[2]C.Boyer, S.Gamburzev, O.Veler, S.Srinirasan, A.J.Appleby. “Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes” Electrochimica Acta 1998, Vol.43, No.24, 3703-3709.
[3]Yu G.Y,Chen W.X, Zhao Jie,Nie Q.L. “Synthesis and characterization of Pt/C nanoparticle” Journal of Zhejiang University 2006, Vol.40, No.2.
[4]Liu Yang, Zhao Jie. ”modified carbon nanotubes supported noble metal platinum for methanol electro-oxidation” Science Technology and Engineering 2008,Vol.8, No.12,3106-3109.
[5]Xin Wang, I-Ming Hsing, ”Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells”Electrochimica Acta 2002, Vol.47, 2981-2987.
[6]Zhicheng Tang, Dongsheng Geng, Gongxuan Lu. ”A simple solution-phase reduction method for the synthesis of shape-controlled platinum nanoparticles” Materials Lett.59, 2005, 1567-1570.
[7]Zhaolin Liu, Xing Yi Ling,Jim Yang Lee, Xiaodi Su, Leong Ming Gang. “Nanosized Pt and PtRu colloids as precursors for direct methanol fuel cell catalysts” J.Mater.Chem.2003,Vol.13, 3049-3052.
[8]Chen-Wei Chen, Daisuke Tano, Mitsuru Akashi. ”Colloidal Platinum Nanoparticles Stabilized by Vinyl Polymers with Amide Side Chains: Dispersion Stability and Catalytic Activity in Aqueous Electrolyte Solutions” Journal of Colloid and Interface Science 2000, Vol.225, 349-358.
[9]Man-Yin Lo, I-Husan Liao, Chun-Chieh Huang. ” Key issues in the preparation of DMFC electrocatalysts” Journal of Hydrogen Energy 2007, Vol.32, 731-735.
[10]Deryn Chu, Rongzhong Jiang. “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell” Journal of Power Source 1999, Vol.80, 226-234.
[11]Dan V.Goia, Egon Matijevic. “Preparation of monodispersed metal particles” NEW J.Chem 1998, 1203-1215.
[12]S.Y.Cha, W.M.Lee. “Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane Surface” Journal of Electrochemical Society 1999, Vol.146, 4055-4060.
[13]H.G.Haubold, Th.Vad, H.Jungbluth, P.Hiller. “Nano structure of NAFION: a SAXS study” Electrochimica Acta 2001, Vol.46, 1559-1563.
[14]Stoyanova, V.Naidenov, E.Budevski, K.Petrov, I.Nikolov, T.Vitanor. “Effect of preparation conditions on the structure and catalytic activity of carbon-supported platinum for the electrooxidation of methanol” Journal of Applied Electrochemistry 1999, Vol.29, 1197-1203.
[15]Dan V.Goia, Egon Matijevic. “Preparation of monodispersed metal particles” NEW J.Chem 1998, 1203-1215.
[16]Zhibin He, Jinhua Chen, Dengyou Liu, Haihui Zhou, Yafei Kuang. “Diamond and Related Meterials 2004, Vol.13, 1764-1770.
[17]Hansan Liu, Chaojie Song, Lei Zhang, Jiujun Zhang, Haijiang Wang, David P Wilkinson.” A review of anode catalysis in the direct methanol fuel cell” Journal of Power Source 2006, Vol.155, 95-110.
[18]賴羿如 “利用奈米碳管與鉑釕化學沉積法製備直接甲醇燃料電池陽極觸媒” 國立清華大學碩士論文 2006.
[19]施良興, “質子交換膜燃料電池膜電極組之塗佈研究與分析”,國立虎尾科技大學 2008.
[20]Taketoshi Matsumoto, Toshiki Komatsu, Kazuya Arai, Takahisa Yamazaki, Masashi Kilima. “Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes” The Royal Society of Chemistry 2004, 840-841.
[21]Y.W.Tang, J.C.Bao, Y.M.Zhou, H.Yang “Preparation of Pt/CNT catalysts and their electrocatalytic activities for oxidation for methanol” Chinese Journal of Inorganic Chemitry 2003,Vol.19, 905-907.
[22]Ma Ning. “Choosing of Pt/C calyst preparation method” Chemical Engineer 2006, Vol.132, No.9, 20-22.
[23]K.H. Choi, D.J. Park, Y.W. Rho, Y.T. Kho, T.H. Lee, “A study of the internal humidification of an integrated PEMFC stack”, Journal of Power Source1998, Vol.74, 146-150.
[24]Wolfgang Schmittinger, Ardalan Vahidi “A review of the main parameters influencing long-term performance and durability of PEM fuel cells” Journal of Power Sources 2008, Vol.180, 1-14.
[25]王朝松、陳振源、張崴縉.”MEA受不同壓製壓力及進氣相對濕度對PEMFC之影響”,中國機械工程學會第二十二屆全國學術研討會論文集,A8-017.
[26]唐並文、李鋼、陽輝.”Pt粒子的粒徑大小對甲醇電催化氧化能的影響”,南京師大學報, Vol.26, 112-114.
[27]Hong S.Z, Zhao Y.X, Sun C.T, Liu H.F “preparation and characterization of Pt nanoparticles supported on carbon black” Chemistry and Bioengineeriong 2007, Vol.24, 17-23.
[28]Shi J.S, Tian J.H, Liu B.W, Shan Z.Q “preparation and performance of electrocatalytic layer of membrane electrode assemblies in PEMFC, Nanotechnology and Precision Engineering 2006, Vol.26, 266-269.
[29]Wolfgang Schmittinger, Ardalan Vahidi “A review of the main parameters influencing long-term performance and durability of PEM fuel cells” Journal of Power Sources 2008, Vol.180, 1-14.
[30]Wenzhen Li, Changhai Liang, Weijiang Zhou, Jieshan Qiu, Zhenhua Zhou, Gongquan Sun, and Qin Xin “Preparation and Characterization of Multiwalled Carbon Nanotube Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells” Phys. Chem. B, 2003, Vol.107 (26), 6292–6299.
[31]劉康宇 “白金觸媒/奈米碳管電極材料之製備與研究” 國立中興大學材料工程學系研究所 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊