跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 03:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊淵顯
研究生(外文):Yuan-Sian Jhuang
論文名稱:紊流流場中懸浮微粒沉澱濃度之量測
論文名稱(外文):Measurements of deposed particle concentration from fully developed turbulence flows
指導教授:邱明志邱明志引用關係
指導教授(外文):Ming-Chih Chiou
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:61
中文關鍵詞:完全發展區紊流流場微粒沉澱
外文關鍵詞:fully developedturbulenceparticle deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用Laser Doppler Velocimetry(LDV)量測懸浮微粒之沉澱區域風速,先證實沉澱區為完全發展之紊流流場。
利用TSI 3475產生含有螢光鈉鹽成分之懸浮微粒,隨著空氣導入水平方型管,懸浮微粒沉積在玻璃平板上的時間分別為1hr、3hr、5hr;玻璃平板浸泡於50㏄的去離子水後,利用Hidex Chameleon儀器測量其螢光讀數。
因此,當流場溫度、流場風速及微粒粒徑大小改變時,可得知各變數對懸浮微粒沉積之影響。
Measurements of the velocity development in the working section is by achieved Laser Doppler Velocimetry (LDV), it is obtained that the turbulence in fully developed.
Sodium salt of fluorescence is produced by TSI 3475 and acts as the measured particles suspended in the air flow of square tube. Aerosol particles deposited on glass plates during 3hr and 5hr, respectively. After the glass plates is soaked in deionized water and measured real value of fluorescence used Hidex Chameleon.
It can therefore be seen that, when the temperature, the velocity and particles diameter are change, the dependent of particles can concentration upon these parameters is obviously observed.
摘要 .................................................i
Abstract ................................................ii
致謝 ...............................................iii
目錄 ................................................iv
表目錄 ................................................vi
圖目錄 ...............................................vii
第一章 緒論 ........................................1
1-1 前言 ........................................1
1-2 文獻回顧 ........................................2
1-3 研究目的 ........................................9
第二章 原理背景 .......................................10
2-1 流體基本概念 ..............................10
2-2 黏性內流(Viscous Internal Flow) ............10
2-3 雷諾數(Reynolds Number) .....................11
2-4 完全發展區(Fully-developed region) ............13
2-5 熱泳效應(Thermophoresis) .....................14
第三章 實驗設備與實驗方法 ..............................15
3-1 設備介紹 .......................................15
3-1-1 流場模擬裝置與加熱溫控水循環 ............16
3-1-2 熱風循環加熱爐 ..............................18
3-1-3 懸浮微粒產生器 (TSI 3475) .....................19
3-1-4 雷射都普勒計速儀 (LDV) .....................23
3-1-5 多功能微量盤式光度儀 (Plate Chameleon)..........24
3-1-6 資料收集器 ..............................25
3-2 實驗方法 .......................................26
3-2-1 螢光曲線製作 ..............................28
3-2-2 LDV量測實驗 ..............................31
3-2-3 風速為實驗變因 ..............................33
3-2-4 時間為實驗變因 ..............................35
3-2-5 冷風熱壁 .......................................37
3-2-6 熱風冷壁 .......................................39
3-2-7 改變懸浮微粒粒徑 ..............................41
3-2-8 實驗注意事項 ..............................43
第四章 結果與討論 ..............................44
4-1 LDV量測數據 ..............................44
4-2 懸浮微粒沉澱照片 ..............................48
4-3 風速對懸浮微粒沉澱的影響 .....................49
4-4 時間對懸浮微粒沉澱的影響 .....................52
4-5 冷風熱壁 .......................................53
4-6 熱風冷壁 .......................................55
4-7 微粒大小改變 ..............................57
第五章 結論與建議 ..............................58
5-1 結論 .......................................58
5-2 建議 .......................................59
參考文獻 ................................................60
[1]R. Munoz-Bueno, E. Hontanon, M. I. Rucandio, “Deposition of fine aerosols in laminar tube flow at high temperature with large gas-to-wall temperature gradients” Aerosol Science 36 (2005) 495-520.
[2]Francisco J. Romay, Sho S. Tadagaki, David Y.H. Pui and Benjamin Y.H. Liu, “Thermophoretic deposition of aerosol particles in turbulent pipe flow” J. Aerosol Sci. Vol. 29, No. 8, (1998) 943-959.
[3]K. Hadinoto, E.N. Jones, C. Yurteri, J.S. Curis, “Reynolds number dependence of gas-phase turbulence in gas-particle” International Journal of Multiphase Flow, 31 (2005) 416-434.
[4]Jyh-Shyan Lin, Chuen-Jinn Tsai, Cheng-Ping Chang, “Suppression of particle deposition in tube flow by thermophoresis” Aerosol Science 35 (2004) 1235-1250.
[5]Stergios G. Yiantsios, Anastasios J. Karabelas, “Deposition of micron-sized particles on flat surfaces: effects of hydrodynamic and physicochemical conditions on particle attachinent efficiency” Chemical Engineering Science 58 (2003) 3105-3113.
[6]C.H. Chiu, C.M. Wang, M.C. Chiou, “Turbulent thermophoresis effect on particle transport processes” International Journal of Thermal Sciences 45 (2006) 475–486.
[7]J.K. Walsh, A.W. Weimer, C.M. Hrenya, “Thermophoretic deposition of aerosol particles in laminar tube flow with mixed convection” Aerosol Science 37 (2006) 715-734.
[8]F. Zheng, “Thermophoresis of spherical and non-spherical particle: a review of theories and experiments” Advances in Colloid and Interface Science 97 (2002) 255-278.
[9]Huan J. Keh, Hung J. Tu, “Thermophoresis and photophoresis of cylindrical particles” Physicochemical and Engineering Aspects 176 (2001) 213-223.
[10]Pushkar Tandor, Michael A. Adewumi, “Particle deposition from turbulent flow in a pipe” J. Aerosol Sci. Vol. 29, (1998) 141-156.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top