跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 03:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林俊仁
研究生(外文):Chun-Jen Lin
論文名稱:鈀鎳複合膜之製備、特性分析及其氫/氮選透性之研究
論文名稱(外文):Study on Preparation,Characterization and Hydrogen /Nitrogen Permselectivity of PdNi Composite Membranes
指導教授:蔡定侃
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:83
中文關鍵詞:氫氣純化無電鍍製程PdPdNi多孔氧化鋁
外文關鍵詞:hydrogen purificationelectroless plating processPdNiPdporous alumina
相關次數:
  • 被引用被引用:0
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體、化工及光電工業的發展,對於氫氣純度的要求亦愈高,氫氣純度不夠,將導致物件毒化而使效能降低,氫氣純化的重要性日愈彰顯。
本研究係以無電鍍共析鍍法製備鈀鎳合金/多孔氧化鋁複合膜,經由改變鍍液中氨水含量、氯化鎳克數、鍍液pH值及析鍍時間,製作不同Ni含量之Pd-Ni合金複合膜,探討析鍍參數對Pd-Ni合金膜之組成結構及氫氣純化性能的影響。
實驗結果顯示;氨水含量由120 ml/L增至180 ml/L,Pd-Ni合金膜中鎳含量由51 at.%降至23 at.%;氯化鎳25 g/L增至27 g/L,鎳含量由7 at.%增至53 at.%;pH值由10提升至11,鎳含量由16 at.%增至63 at.%;析鍍時間由10分鐘增至60分鐘,鎳含量由45at.%增至63 at.%,隨著Pd-Ni合金膜中鎳含量的增加,組成相由Pd逐漸變成PdNi相,Pd-Ni合金膜的表面形貌為連續膜上散佈著微細晶粒,微細晶粒隨鎳含量增加會有增大粗化的現象。
利用Pd,Pd90Ni10及Pd80Ni20金屬膜進行氫氣滲透實驗,探討鎳含量對鈀鎳合金膜之氫氣選透性影響。純鈀膜的氫氣透過係數為2.2~3.6×10-7 mole/ m2sec-Pa,鈀鎳合金膜的氫氣透過係數3.73~8.81×10-7 mole/ m2-sec-Pa。純鈀膜的氮氣透過係數0.721~1×10-7 mole/m2-sec-Pa,鈀鎳合金膜的氮氣透過係數1.1~2.8×10-7 mole/m2-sec-Pa。純鈀的氮氣/氮氣選透係數介於2.54∼4.11,Pd90Ni10的氮氣/氮氣選透係數在2.66∼4.26之間,Pd80Ni20的氮氣/氮氣選透係數在2.85∼4.22之間,添加10 at.%Ni和20 at.%Ni與純鈀的性質相近,表示鈀鎳合金膜取代純鈀膜是可行的。
The demand of hydrogen has increased for the development of semiconductor, chemical and photoelectric industries. The purification of hydrogen is important since the impurity in hydrogen may cause the degradation of produce.
 In this study, the PdNi alloy film was co-deposited on porous alumina to form the PdNi/Al2O3 composite membrane used the electroless plating. The PdNi alloy films contained various Ni contents were manufactured by change the contents of ammonia and nickel chloride in plating solution, the pH value of plating solution and the deposition time. The effects of Ni content on the microstructure and the hydrogen purification of PdNi alloy films were investigated.
The Ni content of PdNi alloy film is decreased from 51 to 23 at.% as the content of ammonia in plating solution increased from 120 to 180 ml / L. The Ni content of PdNi alloy film is increased from 7 to 23 at.%, 16 to 63 at.% and 45 to 63 at.% as the content of nickel chloride in plating solution increased from 25 to 27 g / L, the pH value of plating solution increased from 10 to 11 and the deposition time increased from 10 to 60 min, respectively. The Pd phase was transformed to PdNi phase in PdNi alloy film and the tiny grains on surface were grown to large particles when the Ni content in PdNi alloy film increased.
The hydrogen permeability and nitrogen permeability of Pd film are 2.2~3.6×10-7 and 0.721~1×10-7 mole/m2-sec-Pa. The hydrogen permeability and nitrogen permeability of PdNi alloy film are 3.73×10-7~8.81×10-7 and 1.1~2.8×10-7 mole/m2-sec-Pa. The separation factor(H2/N2)of Pd film is about 2.54∼4.11. The separation factors(H2/N2)of Pd90Ni10 and Pd80Ni20 are about 2.66∼4.26 and 2.85∼4.22. The hydrogen permeability of PdNi alloy is similar to that of pure Pd indicated that the PdNi alloy replaces the Pd as hydrogen separation membrane is feasible.
總目錄
第一章 緒論
1.1 鈀及鈀合金膜氫氣分離和純化之簡介........1
1.2研究目的與內容........3
第二章 文獻回顧與探討
2.1 鈀及鈀基合金複合膜之氫氣純化分離........5
2.1.1 氫氣純化分離複合膜........6
2.1.2 氣體的透過行為........8
2.1.3 多孔基材之氣體透過行為........8
2.1.4 氫氣在鈀膜中的透過行為........12
2.2 複合膜之製備方法........14
2.3 無電鍍製程........18
第三章 實驗方法與實驗目的
3.1 實驗藥品........27
3.2儀器及分析方法........28
3.2.1 分析儀器........28
3.2.2 其它儀器........29
3.3 實驗步驟及方法........30
3.3.1 氧化鋁基材的製備........31
3.3.2 無電鍍法製備鈀鎳複合膜........31
3.3.3 複合膜之特性分析........33
3.3.4 氣體透過實驗........34
第四章 結果與討論
4.1 多孔性氧化鋁基材製作........41
4.2 改變析鍍參數製作不同Ni含量之Pd-Ni合金膜........44
4.2.1 氨水含量對無電鍍鈀鎳合金膜之影響........44
4.2.2 氯化鎳克數對無電鍍鈀鎳合金膜之影響........52
4.2.3 pH值對無電鍍鈀鎳合金膜之影響........56
4.2.4 時間對無電鍍鈀鎳合金膜之影響........60
4.2.5 綜合討論........65
4.3 鈀鎳複合膜之氣體透過結果........67
4.3.1 氧化鋁基材之氣體透過........67
4.3.2 鎳對鈀鎳合金膜之氫氣透過量及選透性能影響........67
第五章 結論........80
參考文獻........81





表目錄
表2.1 鈀膜在商業使用上的限制........21
表3.1 敏化液及活化液之組成成分........36
表3.2 無電鍍鈀鎳之鍍液組成........36
表4.1 固定pH 11、氯化鈀0.25 g/L、氯化鎳26 g/L,改變氨水含
量120-180 ml/L........47
表4.2 氧化鋁基材之H2/N2理想分離係數........69
表4.3 不同複合膜之氮氣透過係數........70
表4.4 不同複合膜之氫氣透過係數........71
表4.5 純鈀、Pd-10Ni、Pd-20Ni之H2/N2理想分離係數........72





圖目錄
圖2.1 氫氣在鈀膜上吸附等溫圖........22
圖2.2 Knudsen擴散和層流與Kn的關係........23
圖2.3氫氣透過緻密金屬膜之溶解擴散機制示意圖........24
圖2.4 典型濺鍍裝置圖........25
圖2.5 真空-電鍍裝置圖........26
圖3.1 掃描式電子顯微鏡SEM與能量分布光譜儀........37
圖3.2 掃描式電子顯微鏡系統示意圖........37
圖3.3 X光繞射分析儀........38
圖3.4 XRD繞射示意圖........38
圖3.5 實驗流程圖........39
圖3.6 滲透裝置圖........40
圖4-1 不同燒結溫度與時間之氧化鋁基材表面型態........43
圖4.2 pH 11、氯化鈀0.25 g/L、氯化鎳26 g/L 、析鍍時間10分鐘,氨水含量........48
圖4.3 pH 11、氯化鈀0.25 g/L、氯化鎳26 g/L 、析鍍時間30分鐘,氨水含量........49
圖4.4 pH 11、氯化鈀0.25 g/L、氯化鎳26 g/L 、析鍍時間60分鐘、氨水含量........50
圖4.5 pH11、氯化鈀0.25g/L、氯化鎳26g/L、析鍍30分鐘,氨水含量120 ml/L、150 ml/L、180 ml/L........51
圖4.6 pH 10.5、氨水含量180 ml/L、氯化鈀0.25 g/L、析鍍時間60分鐘,氯化鎳分別為........54
圖4.7 pH 10.5氨水180 ml/L析鍍60分鐘、氯化鈀0.25 g/L、氯化鎳25 g/L、26 g/L、27 g/L之XRD繞射分析結果........55
圖4.8 (a)~(c)為氨水含量180 ml/L、氯化鈀0.25 g/L、氯化鎳27 g/L析鍍時間30分鐘........58
圖4.9 氨水180ml/L析鍍30分鐘、氯化鈀0.25g/L、氯化鎳27 g/L改變 pH 10、10.5、11之XRD繞射分析結果........59
圖4.10 (a)~(c)為pH 11、氨水量180 ml/L、氯化鈀0.25 g/L、氯化鎳27 g/L,析鍍時間........62
圖4.11 (a)~(c)為 pH 11、氨水量180 ml/L、氯化鈀0.25 g/L、氯化鎳26 g/L,析鍍時間........63
圖4.12 pH 11、氨水含量180ml/L、氯化鈀0.25g/L、氯化鎳27 g/L改變析鍍時間........64
圖4.13 (a)、(b) pH 10.5、氨水含量180 ml/L、氨化鈀0.25 g/L........66
圖4-14 氧化鋁基材之H2和N2透過係數對平均壓力之關係 ........73
圖4-15 純鈀之H2滲透通量對壓力差作圖........74
圖4-16 Pd-10Ni之H2滲透通量對壓力差作圖........75
圖4-17 Pd-20Ni之H2滲透通量對壓力差作圖........76
圖4-18 純鈀之H2和N2透過係數對平均壓力作圖........77
圖4-19 Pd-10Ni之H2和N2透過係數對平均壓力作圖........78
圖4-20 Pd-20Ni之H2和N2透過係數對平均壓力作圖........79
1. 1.J.N.Armor,Appl.Catal.A, 176 (1999) 159.
2.E、Kikuchi, Catalysis Today, 56 (2000) 97-101.
3.V. H. Gryaznov et al., Appl. Catal. A, 96 (1993) 15.
4.N. Itoh et al., Appl. Catal. A, 107 (1993) 83.
5.G.J. Grashoff,C.E. Pillington, and C.W. Corti,Platinum Met. Rev., 27 (1983) 157-169.
6.R. Zhao et al., Sep. Sci. Technol., 25 (1990) 1473.
7.M. Van Swaay, C.E. Birchenall, Permeability and diffusion of hydrogen though palladium, Trans. Merall. Soc., 18 (1960) 285.
8.V. Jayaraman, Y.S. Lin, M. Pakals, R.Y. Lin, Journal of membrane Science 99 (1995) 89.
9.S. Yam, H. Maeda, K. Kusakabe, S. Morooka, Ind. Eng. Chem. Res. 33 (1994) 616.
10.S.E. Nam, S.H. Lee, and K.H. Lee, J. Membrane Sci., 153 (1999) 163.
11.J. Shu, B.P.A. Grandjean, S. Kaliaguine, Applied Catalysis A:Gernal, 119 (1994) 305.
12.J. Shu, B.P.A. Grandjean, S. Kaliaguine, Catalysis Today, 25 (1995) 327.
13.Paul M. Thoen, Fernando Roa, J. Douglas Way Desalination, 193 (2006) 224.
14.V.A.C. Haanappel, D. Rutenbeck, A. Mai, S. Uhlenbruck, D. Sebold, H. Wesemeyer, B. Röwekamp, Journal of Power Sources, 130 (2004) 119.
15.J、Shu et al., Thin Solid Films, 286 (1996) 72.
16.H. Gao et al., Journal of membrane Science, 265 (2005) 142.
17.S. E. Nam et al., Journal of membrane Science, 192 (2001) 177.
18.T. Shobha, C.L. Aravinda, P. Bera, L.G. Devi, S.M. Mayanna, Mater. Chem. Phys., 80 (2003) 656.
19.A.L. Athayde, R.W. Baker, P. Nguyen, J.Membr. Sci., 94 (1994) 299.
20.S. Uemiya, T. Matsuda, E. Kikuchi, “Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics”, J. Membr. Sci., 56 (1991) 315.
21.J. Shu, B.P.A. Grandjean, E. Ghali, S. Kaliaguine, “Simultaneous deposition of Pd and Ag on porous stainless steel by electroless plating”, J. Membr. Sci.. 77 (1993) 181.
22.V. Jayaraman, Y.S. Lin, “Synthesis and hydrogen permeation properties of ultrathin palladium–silver alloy membranes”, J. Membr. Sci., 104 (1995) 251.
23.Z.Y. Li, H. Maeda, K. Kusakabe, S. Morooka, H. Anzai, S. Akiyama, “Preparation of palladium–silver alloy membranes for hydrogen Separation by the spray pyrolysis method”, J. Membr. Sci., 78 (1993) 247.
24.F. Morón, M.P. Pina, E. Urriolabeitia, M. Menéndez, and J. Santamaría, Desalination, 147 (2002) 425.
25.J.N. Armor, J. Membrane Sci., 147 (1998) 217.
26.V. H. Gryaznov et al., Appl. Catal. A, 96 (1993) 15.
27.黃仲濤、曾昭槐等無機膜技術及其應用,中國石化出版社,p167.
28.Schofield R W, Fane A G, Fell CJ D. J. membr. Sci., 53 (1990) 159.
29.G. Xomeritakis, and Y.S. Lin, J. Membrane Sci., 120 (1996) 261.
30.Rao M B, Sircar S., J Membr. Sci., 85 (1993) 253.
31.G. Xormeritakis, and Y.S. Lin, J. Membrane Sci., 120 (1996) 261.
32.S.J. Lee, S.M. Yang, and S.B. Park, J. Membrane Sci., 96 (1994) 223.
33.M. Tsapatsis, G.R. Gavalas, G. Xomeritakis, “Recent Advances in Gas Separation and Microporous and Ceramic Membrane”s, Kanellopous, N.K., Ed. Membrane Science and Technology Series, Elsevier: New York, 6 (2000) 397.
34.P. Atanosova, V. Bhaskaran, T. Kodas, H.M. Smith, Mater. Res. Soc., Symp. Proc., 428 (1996) 25.
35.K.J. Bryden, J.Y. Ying, Nanostruct. Mater.., 9 (1997) 485.
36.W. Weirich, B. Biallas, B. Kugler, M. Oertel, M. Pietsch, U. Winkelmann, Int. J. Hydrogen Energy, 11 (1986) 459.
37.U. Winkelmann, R. Schulten, W. Weirich, B. Kugler, L. Lucke, M. Oertel, M. Pietsch, J. Schmitz, Chem. Ing. Tech., 58 (1986) 824.
38.F. Behr, R. Schulten, W. Weirich, US Patent 4, 496 (1985) 373.
39.C. S. Jun, K. H. Lee, “Preparation of palladium membranes from the reaction of Pd(C3H3)(C5H5) with H2: wet-impregnated deposition”, J. Membr. Sci., 157 (1999) 107.
40.S. E. Nam et al., Journal of membrane Science, 153 (1999) 163.
41.Alexander S Mukasyan, “Dynamics of structure formation during electroless plating of thin metal.ceramic composite membranes”, (1998).
42.胡文彬、劉磊等,難鍍基材的化學鍍鎳技術,化學工業出版社,p1-p13.
43.張耿豪,“以無電鍍逐層析鍍法製備氫氣選透性鈀銀合金/氧化鋁複合膜之研究”,國立成功大學化工所碩士論文 (2004) 30-31.
44.材料分析, 汪建民主編, 中國材料科學 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top