跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/23 23:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹媛婷
研究生(外文):Yaun-Ting Chan
論文名稱:銀鑭合金薄膜之抗氧化與抗硫化探討
論文名稱(外文):Study on Against Oxidation and Sulfidation of Ag(La) thin film
指導教授:方昭訓
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:103
中文關鍵詞:磁控濺鍍自我鈍化銀鑭合金薄膜硫化
外文關鍵詞:Magnetron Sputterself-passivationAg(La) alloy thin filmsulfidation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:496
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討Ag(La)合金薄膜之抗氧化與抗硫化之性質,以改善銀薄膜之高溫聚集與玻璃基板的附著性,並防止其在大氣中硫化與氧化。本實驗利用磁控濺鍍法在SiO2基板上製備Ag(0.54 - 8.74 at.% La)合金薄膜,薄膜成分以EDS分析,後續製程利用爐管對其合金薄膜進行400oC–800oC持溫1小時熱處理,並以歐傑能譜分析儀分析原子的擴散行為,藉由X光繞射儀、掃瞄式電子顯微鏡與穿透式電子顯微鏡觀察薄膜的顯微結構,探討Ag(La)合金薄膜之結構變化。同時,使用四點探針量測薄膜片電阻值變化。而薄膜與二氧化矽的附著性測試乃藉Scotch tape test 來評估。
實驗結果顯示,銀薄膜中之La摻雜原子經退火後會擴散至薄膜表面及薄膜與二氧化矽界面,並與氧原子反應而在表面處形成氧化層,而薄膜電阻率亦隨著La含量增加而有增高的趨勢。對於薄膜的抗硫化性而言,銀合金薄膜先作500-600oC的氧化預熱處理使其表面形成鈍化層,再與未形成鈍化層之合金薄膜試片經硫化後探討比較抗硫化的現象,其中以氧化預熱處理600oC之Ag (2.80-8.74 at.% La)薄膜的抗硫化性最佳,而含2.80 at.% La之銀薄膜最低片電阻為2.34 Ω/□。
The characteristics of Ag(La) alloy thin films and its applications as the materials of interconnect were investigation in study. This work aims at preparing a high adhesion, oxidation resistance and self-passivated Ag(La) alloy thin film, which will be potentially adopted as gate material on TFT-LCD and interconnection on microelectronics. Ag(0.54-8.74 at.% La) films were prepared on SiO2/Si substrate by sputtering method and were subsequently annealed by furnace in a temperature range of 400°C - 800°C for 1 hour in oxygen ambient. Self-passivated Ag thin film in the form of La2O3/Ag/SiO2 was therefore obtained because La diffused easily from matrix toward the surface and reacted with the oxygen by forming La2O3. The formation of La2O3/Ag /SiO2 improved the resistivity, adhesion to SiO2, oxidation resistance and passivative behavior of the studied film. Besides, the Ag alloy films pre-annealed at 500°C in oxygen ambient reveal a superior sulfidation resistance . The pre-annelaed Ag(2.80 at.% La) thin film has the lowest sheet resistance of 2.34 Ω/□ .
目錄
摘要..................................................i
第 1 章 前言..........................................1
1-1 半導體製程之應用..................................1
1-2 液晶顯示器製程之應用..............................3
第 2 章 研究背景與動機...............................11
第 3 章 實驗方法與步驟...............................13
3-1 實驗步驟.........................................13
3-1-1 實驗示意圖.....................................13
3-1-2 實驗流程圖.....................................15
3-2 實驗材料.........................................16
3-2-1 靶材...........................................16
3-2-2 製程氣體.......................................16
3-2-3 基板與製程前處理...............................16
3-3 實驗製程與設備...................................16
3-3-1 濺鍍系統.......................................16
3-3-2 熱處理系統.....................................18
3-4 實驗分析設備.....................................19
3-4-1 表面輪廓儀 (Alpha-Step)........................19
3-4-2 四點探針 (Four Point Probe, FPP)...............19
3-4-3 X光繞射儀 (X-Ray Diffraction, XRD).............19
3-4-4 原子力顯微鏡 (Atomic Force Microscope, AFM).................................................20
3-4-5 離子減薄機 (Ion Miller)........................20
3-4-6 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM).................................................20
3-4-7 歐傑電子能譜儀 (Auger Electron Spectroscopy, AES).................................................21
3-4-8 附著性測試 (Scotch Tape Test)................................................22
3-4-9 薄膜電性探討...................................22
第 4 章 結果與討論 ...................................39
4-1 Ag(La)合金薄膜初鍍膜之電阻值.....................39
4-2 熱處理氧氣分壓對Ag(La)合金薄膜電性之影響..........41
4-3 熱處理溫度對Ag(La)合金薄膜電性之影響..............43
4-4 結構分析薄膜相形成................................45
4-4-1 Ag(La)二元合金相圖..............................45
4-4-2 Ag(La)合金薄膜經熱處理之結構分析................46
4-4-3 Ag (0.54-8.74 at.%La)合金薄膜經熱處理前後之Ag (111)繞射峰偏移量分析比較....................................51
4-5 抗硫性測試........................................52
4-6 元素縱深分析......................................57
4-7 AFM表面形貌分析...................................59
4-8 薄膜TEM微結構分析.................................61
4-9 Ag(La)合金薄膜之附著性特性........................63
4-10 純銀與Ag(La)合金電極之MOS電流-電壓(I-V)特性......65
第 5 章 結論..........................................98
參考文獻..............................................99



圖目錄
圖1.1電阻/電容時間延遲對元件特徵尺寸的關係曲圖.........7
圖1.2 TFT-LCD之(a)主動矩陣方式(b)被動矩陣方式代表性結構圖。...................................................8
圖1.3 TFT-LCD 面板及構造示意圖。......................8
圖1.4 TFT元件驅動示意圖。.............................9
圖 1.5連結導線材料電阻率與控制面板尺寸關係圖。........10
圖 3.1 實驗示意圖.....................................14
圖 3.2 實驗流程示意圖.................................15
圖 3.3 靶材示意圖.....................................25
圖 3.4 高溫爐管示意圖.................................26
圖 3.5 磁控共濺鍍腔體設備示意圖.......................27
圖 3.6 小型爐管.......................................28
圖 3.7 表面輪廓儀 (Alpha-Step)........................29
圖 3.8 四點探針量測系統...............................30
圖 3.9 X光繞射儀......................................31
圖 3.10 原子力顯微鏡(AFM)結構示意圖...................32
圖 3.11 離子減薄機....................................33
圖 3.12 穿透式電子顯微鏡..............................34
圖 3.13 歐傑電子能譜儀 (國立清華大學).................35
圖 3.14 Adhesion Test 示意圖.........................36
圖 3.15 I-V量測設備圖................................37
圖 3.16 金氧半導體(Metal-Oxide Semiconductor)電容器之結構圖....................................................38
圖 4.1 Ag97.2La2.8/SiO2/Si 初鍍膜薄膜之沉積速率、電阻率與改變濺鍍功率之關係圖 ....................................73
圖 4.2 Ag (0.54-8.74 at.% La)合金薄膜初鍍膜在不同的氧氣分壓環境下(0-100 mTorr),經600˚C持溫1時中退火熱處理後之電阻率變化圖..................................................74
圖 4.3 Ag (0.54-8.74 at.% La)合金薄膜經過400-800˚C 1小時在氧氣分壓(10 mTorr)下退火熱處理之熱處理溫度對電阻率作圖....................................................75
圖4.4 Ag(La) 二元合金相圖 ...........................76
圖 4.5 Ag (0.54 – 8.74 at.% La) 初鍍膜薄膜之X光繞射圖 .............................................77
圖 4.6 Ag (0.54 at.% La)合金薄膜在經爐管在氧氣份10 mTorr下持溫1個小時做退火熱處理 之X光繞射圖.....................78
圖4.7 Ag (2.80 at.% La)合金薄膜在經爐管在氧氣份10 mTorr下持溫1個小時做退火熱處理 之X光繞射圖.....................79
圖 4.8 Ag (3.45 at.% La)合金薄膜經爐管在氧氣分10 mTorr下持溫1個小時做退火熱處理 之X光繞射圖.......................80
圖 4.9 Ag (5.21 at.% La)合金薄膜經爐管在氧氣分10 mTorr下持溫1個小時做退火熱處理 之X光繞射圖.......................81
圖 4.10 Ag (5.60 at.% La)合金薄膜經爐管在氧氣分10 mTorr下持溫1個小時做退火熱處理 之X光繞射圖.....................82
圖4.11 Ag (7.32 at.% La)合金薄膜與經爐管在氧氣份10 mTorr下持溫1時做退火熱處理 之X光繞射圖.........................83
圖4.12 Ag (8.74 at.% La)合金薄膜與經爐管在氧氣份10 mTorr下持溫1時做退火熱處理 之X光繞射圖.........................84
圖 4.13 純Ag與合金薄膜之初鍍膜與經硫氣分壓 (10 mTorr)下500˚C持溫30分退火熱處理後之電阻率變化圖...................85
圖 4.14 純Ag與合金薄膜經氧分壓10 mTorr 600oC /1小時與再經硫氣分壓 (10 mTorr)下500˚C 30分退火熱處理後之電阻率變化圖....................................................86
圖 4.15 純Ag與Ag (0.54-8.74 at.% La)合金薄膜初鍍膜經硫氣分壓(10 mTorr)下500˚C持溫30分熱處理後之XRD繞射圖.........87
圖 4.16 純Ag與Ag (0.54-8.74 at.% La)合金薄膜之經氧分壓(10 mTorr) 600oC持溫1小時熱處理形成鈍化膜後再經硫化處理後之XRD繞射圖..................................................88
圖 4.17 Ag (0.54 at.% La)合金薄膜(a)初鍍膜與(b)經氧氣分(10 mTorr) 600°C持溫1小時熱處理後之AES元素縱深分析圖......89
圖4.18 Ag (0.54 at.% La)合金薄膜(a)初鍍膜與(b)經氧氣分(10 mTorr)600oC持溫1小時形成鈍化層後進行抗硫化處理後之元素縱深分析圖..................................................90
圖4.19 Ag(0.54 at.% La)合金薄膜(a)初鍍膜與(b)經小型爐管在氧氣分(10 mTorr)中700 oC熱處理1小時之AFM表面形貌........91
圖 4.20 Ag(5.21 at.% La)合金薄膜(a)初鍍膜與(b)經小型爐管在氧氣分(10 mTorr)中700oC熱處理1小時之AFM表面形貌 ........92
圖 4.21 Ag(0.54 at.% La)合金薄膜(a)初鍍膜與(b)有鈍化層,再經抗硫化處理之AFM表面形貌...............................93
圖 4.22 Ag (0.54 at.% La)合金薄膜(a)初鍍膜(b)經氧氣分(10 mTorr) 600oC持溫 1小時退火熱處理之TEM橫截面結構圖.....94
圖4.23 Ag (8.74 at.% La)合金薄膜(a)初鍍膜(b)經氧氣分(10 mTorr) 600oC/1小時退火熱處理之TEM橫截面結構圖 ........95
圖 4.24 Ag (0.54 at.% La)合金薄膜(a)初鍍膜經硫化處理(b)經氧氣分(10 mTorr) 600oC持溫1小時退火熱處理產生鈍化層再進行硫化處理之TEM橫截面結構圖.................................96
圖 4.25 Ag/SiO2/Si/Al與Ag (0.54-7.32 at.% La)/SiO2/Si/Al之 MOS結構經(a) 初鍍膜與 (b) 600˚C 1小時退火熱處理之電流-電壓(I-V)特性曲線圖.......................................97



表目錄
表1.1 Comparison of properties of possible interconnect metals.[4].............................................6
表 4.1 實驗試片參數表與所得成份表.....................67
表 4.2 Ag(La)合金薄膜經不同氧分壓(10-100 mTorr)下持溫600°C熱處理之................................................68
表 4.3 Ag(0.54-8.74 at.% La)與純Ag薄膜在經過400-800˚C持溫 1小時之爐管退火熱處理後,所得到之電阻率 (單位為μΩ cm)...................................................69
表4.4 Ag(0.54 at.%La)合金薄膜與Ag(8.74 at.%La)合金薄膜經SEM之Mapping後的比較分析。...............................70
表4.5 不同La含量之Ag(La)/SiO2材料附著性測試結果.......71
表4.6 美國測試與材料協會(ASTM)規範第D3359-02附著特性分級....................................................72
[1]The International Technology Roadmap for Semiconductor, (Semiconductor Industry Association, San Jose, 2007).
[2]S. P. Murarka,”Multilevel interconnections for ULSI and GSI”, Mater. Sci. Eng., 19 (1997) 87.
[3]G. W. Ray, “Low dielectric constant materials integration challenges”, Mat. Res. Soc. Symp. Proc.,511 (1998) 199.
[4]S. P. Murarka, I. V. Verner and R. J. Gutmann, “Copper-Fundamental Mechanisms for Microelectronic Application”, (John Willy & Son, New York, 2000).
[5]N. Awaya and Y. Arita,”Copper chemical vapor deposition from Cu (hexafluoroacetylacetonate) trimethylvinylsilane”, J. Electron. Mater., 21 (1992) 959.
[6]A. Jain, T. T. Kodas, R. Jairath, and M. J. Hampden-Smith,” Improving Cu metallization of Si by electrodeposition under centrifugal fields”, J. Vac. Sci. Technol., B11 (1993) 2107.
[7]J. Lin and M. C. Chen,” Dry patterning of copper films using an O2 plasma and hexafluoroacetylacetone”, Jpn. J. Appl. Phys., 38, (1999) 4863.
[8]M. Wang, B. Zhang, G.P. Zhang, C.S. Liu, “Evaluation of thermal fatigue damage of 200-nm-thick Au interconnect lines”, Scripta Materialia, 60 (2009) 803.
[9]E. Misra, Y. Wang, N.D. Theodore, T.L. Alford, “Evaluation of diffusion barrier and electrical properties of tantalum oxynitride thin flim for silver metallization” , Thin Solid Films, 457 (2004) 338.
[10]M. Hauder, W. Hansch, J. Gstottner, D. Schmitt-Landsiedel, “Ag metallization with high electromigration resistance for ULSI”, Solid-State Electronics, 47 (2003) 1227.
[11]S. Takayama, “Evaluation of Al (Nd)- alloy films for application to thin-film-transistor liquid crystal displays”, J. Vac. Sci. Technol., B14 (1996) 3257.
[12]T. Arai, H. Iiyori, Y. Hiromasu, M. Atsumi, S. Ioku, K. Furuta,” Aluminum-based gate structure for active-matrix liquid crystal displays”, IBM J. Res. Develop. ,42 (1998) 491.
[13]E. Iwamura, T. Ohnishi, K. Yoshikawa, and K. Itayama,” In situ scanning electron microscope observation of hillock and whisker growth on Al–Ta alloy films for interconnections of thin film transistor–liquid crystal displays”, J. Vac. Sci. Technol., A12 (1994) 2922.
[14]S. Takayama and N. Tsutsui,” Effects of Y or Gd Additions on the Structure and Resistivity of Al Thin Films”, J. Vac. Sci. Technol., A 14 (1996) 2499.
[15]T. Arai, A. Makita, Y. Hiromasu, H. Takatsuji,” Mo-capped Al–Nd alloy for both gate and data bus lines of liquid crystal displays”, Thin Solid Films., 383 (2001) 287.
[16]L. Berenbaum, R. Rosenberg, “ Surface topology changes during electromigration in metallic thin film stripes“, Thin Solid Films, 4 (1969) 187.
[17]H.M. Breitling, R.E. Hummel, “Electromigration in thin silver, copper, gold, indium, tin, lead and magnesium films“, J. Phys. Chem. Solids, 33 (1972) 845.
[18]R.E. Hummel, H.M. Breitling, “On the direction of electromigration in thin sliver, gold, and copper flims“, Appl. Phys. Lett., 18 (1971) 373.
[19]T.E. Graedel,” Corrosion Mechanisms for Silver Exposed to the Atmosphere”, J. Electrochem. Soc., 139 (1992) 1963.
[20]S.K. Sharma, J. Spitz, “Hillock formation, hole growth and agglomeration in thin silver films”,Thin Solid Films, 65 (1980) 339.
[21]Y. Minamide, M. Kawamura, Y. Abe, K. Sasaki, “Agglomeration suppression behavior and mechanisms of Ag-Cu and Ag-Nb thin films”, Vacuum, 11 (2009) 2001.
[22]http://www-inst.eecs.berkeley.edu/~ee290d/sp99/EE290D_HO18.pdf
[23]J. Nakai, T. Onishi, E. Kusumoto, K. Yoshikawa, Y. Yoneda, “The Development of Functional Thin Films and Sputtering Target aterials for Electronic Devices”, KOBELCO TECHNOLOGY REVIEW NO. 26 (2005) 98.
[24]Cattaruzza, F. Gonella, S. Ali, C. Sada and A. Quaranta, “Silver and gold doping of SiO2 glass by solid-state field-assisted diffusion”, Journal of Non-Crystalline Solids, 355 (2009) 1136.
[25]J.D. McBrayer, R.M. Swanson, T.W. Sigmon, ” Improved surface morphology and texture of Ag films on indium tin oxide via Cu additions”, J. Electrochem. Soc. 133 (1986)1243.
[26]H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films”, Appl. Phys. Lett., 81 (2002) 4287.
[27]Daniel Adams, B.A. Julies, J.W. Mayer, T.L. Alford, “Cossosion of titanium-nitride encapsulated silver films exposed to a H2S ambient”, Thin Solid Films, 332 (1998) 235.
[28]Franey, T. P., G. W.Kammlott, and T. E.Graedel., “The corrosion of silver by atmospheric sulfurous gases “, Corrosion Science, 25 (1985) 133.
[29]Alford, Terry L.,Misra, Ekta, “Cladded silver and silver alloy metallization for improved adhesion and electromigration resistance”, US Patent, 446 (2006) 037.
[30]T. Jiang,F. Peng, “Metallization stack structure to improve electromigration resistance and keep low resistivity of ULSI interconnects”, US Patent, 257 (2000) 762.
[31]Y. Zeng, L.H. Chen, Y.L. Zou, P.A. Nguyen, J.D. Hensen and T.L. Alford.,” Enhancement of Ag electromigration resistance by a novel encapsulation process”, Mater. Lett., 45 (2000) 157.
[32]R.E. Hummel and H.J. Geier., “Activation energy for electrotransport in thin silver and gold films”, Thin Solid Films, 25 (1975) 335.
[33]Sugawara, K.; Kawamura, M.; Abe, Y.; Sasaki, K., “Comparison of the agglomeration behavior of Ag(Al) films and Ag(Au) films”, Microelectronic Engineering, 84 (2007) 2476.
[34]Y. Minamide, M. Kawamura, Y. Abe, K. Sasaki, “Agglomeration suppression behavior and mechanisms of Ag-Cu and Ag-Nb thin films”, Vaccum, Available online ,2009.
[35]O. Akhavan, E. Ghaderi ,“Capping antibacterial Ag nanorods aligned on Ti interlayer by mesoporous TiO2 layer”, Surface and Coatings Technology, 203 (2009) 3123.
[36]Jingqin Wang, Baozhu Wang, Ming Wen, and Yushen Lu,”Study on the behavior of sliver rate earth oxide contact material”, IEEE, 7 (2000) 231.
[37]J. D. Sinclair, “Tarnishing of Silver by Organic Sulfur Vapor: Film Characteristics and Humidity Effects”, J. Electrochem. Soc., 129 (1982) 33.
[38]Cattaruzza, F. Gonella, S. Ali, C. Sada and A. Quaranta, “Silver and gold doping of SiO2 glass by solid-state field-assisted diffusion”, Journal of Non-Crystalline Solids, 355 (2009) 1136.
[39]M. J. Cheng, “Effect of doping of La, Ce and Zr elements on the thermal stability of titania’, INDUSTRIAL CATALYSIS, 6 (2002) 1008.
[39]Sung S. Kim, Jun Y. Park, Thomas H., and Sanders Jr., “Thermodynamic modeling of the miscibility gaps and the metastability in the R2O3-SiO2 systems”, J. of Alloys and Compounds, 321 (2001) 84.
[40]S. Raghavan, ”Gibbs emergy of formation of La2CuO4 using a calcium fluoride solid electrolyte galvanic cell ”, J. of Alloys and Compounds, 232 (1996) L20.
[41]R.Vidhya, M.P. Antony, P.R. Vasudeva Rao, and B. Viswanathan, “Enthalpy and Gibbs energy of formation of Lanthanum dicarbide”, J. of Nuclear Materials, 295 (2001) 221.
[42]K. Sufawara, Y. Minamide, Y. Abe, K. Sasaki, “Agglomeration behavior of Ag films suppressed by alloying with some elements”, Vacuum, 83 (2009) 610.
[43]BOUCHARD D., BALE C. W., “Measurement of the standard molar Gibbs free energy of formation of Ag2S using Ag+ β-alumina solid electrolyte”, Journal of chemical thermodynamics, 27 (1995) 383.
[44]O. Aknavan, A. Azarm, A.Z. MosLaegh, M.A. Bahrevar, “Thermal stability of nanoscale sliver metallization in Ag/W/Co/Si (100) multilayer”, Applied Surface Science, 252 (2006) 5335.
[45]汪建民,材料分析,中國材料科學學會 (1998).
[46]S. Sharafat and N. M. Ghoniem, “Chemical Compatibility of Structural Materials with Liquid Li and Sn-Li”, APEX Meeting, Argonne National Laboratory, 10 (2000) 12.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top