(3.215.183.251) 您好!臺灣時間:2021/04/22 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江安洲
研究生(外文):an-zhou Jlang
論文名稱:無電鍍複合鍍製備Al2O3-Black Ni 太陽光譜選擇性複合吸收膜之性質探討
論文名稱(外文):The study of Al2O3-Black Ni solar spectrallyselective composite absorbers manufactured byelectroless composite coating technology
指導教授:蔡定侃
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:105
中文關鍵詞:無電鍍鎳抗反射層複合吸收膜吸收率熱輻射率
外文關鍵詞:Electroless NickelAnti-reflection layerDielectric-metal composite coatingsSolar absorpanceThermal emittance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬-電介質複合吸收膜具高吸收性能而廣泛使用於太陽光集熱器,但因成本昂貴使得其應用受到限制。本研究利用製程簡單及價格便宜之無電鍍複合鍍技術,製備 Al2O3-Black Ni太陽光譜選擇性複合吸收膜於鋁基材上,利用Sol-gel法藉旋轉塗佈法在吸收膜表面上製備抗反射層。主要探討吸收膜中三種不同粒徑(300 nm、70 nm、15 nm)與添加量(4 g/L、8 g/L、16 g/L、24 g/L、28 g/L)之氧化鋁、複合吸收膜厚度和塗佈不同抗反射層SiO2和TiO2之氧化物,對複合吸收膜之吸收率(α)和熱輻射率(ε)的影響,最後以選擇性比值條件最佳進行環境測試。
利用紫外光/可見光/近紅外光分光光譜儀(Uv-Vis-NIR)分析吸收膜在300 nm ~ 2500 nm波長範圍之反射率,傅立葉轉紅外線光譜儀(FTIR)分析吸收膜在4000 cm-1 ~ 500 cm-1波數(2500 nm ~ 20000 nm波長)範圍之反射率,以量測其吸收率與熱輻射率。使用掃瞄式電子顯微鏡(SEM)、原子力顯微鏡(AFM)、化學分析電子儀(ESCA)、表面輪廓儀(α - step),觀察吸收膜表面電介質的分佈、厚度、表面粗糙度、分析吸收膜表面化學組成和抗反射厚度對光學性質的影響。
添加粒徑300 nm氧化鋁濃度由8 g/L增加至28 g/L,吸收率由0.69增加至0.79,熱輻射率由0.08增加至0.11;添加粒徑70 nm氧化鋁濃度由8 g/L增加至28 g/L,吸收率由0.79增加至0.84,熱輻射率由0.13增加至0.20;添加粒徑15 nm氧化鋁濃度由4 g/L增加至16 g/L,吸收率由0.81增加至0.86,熱輻射率由0.09增加至0.15。粒徑15 nm,16 g/L之 Al2O3-Black Nickel 複合吸收膜厚度為2.7 μm時具最佳之光學性質,吸收率0.89,熱輻射率0.07,選擇性比值為12.71。以SiO2-0.5M做抗反射層塗佈於Al2O3-Black Nickel複合吸收膜上,其吸收率為0.92、熱輻射率為0.09,可得到比TiO2抗反射層較優異的光學性質。
環境耐久測試以粒徑15 nm,16 g/L,厚度2.7 μm之Al2O3-Black Nickel 複合吸收膜進行24 h至75 h之300 ℃熱穩定及溼度95 %水氣凝結測試,結果顯示,經75 h熱穩定測試; Al2O3-Black Nickel 複合吸收膜光學性能比值由12.71衰退減少至9.4,Black Nickel吸收膜光學性能比值由17光學性能衰退至4.84,經水氣凝結測試;Al2O3-Black Nickel 複合吸收膜光學性能比值衰退減少至4.81,Black Nickel吸收膜光學性能比值衰退減少至5.61。
The metal-dielectric composite spectrally selective solar absorbers were widely used in solar thermal collectors due to its excellent absorption. The manufacture cost of the metal-dielectric composite spectrally selective solar absorbers is expensive and that limits its applications. In this work, the electroless composite coating technology which possesses lower cost, simple equipment and easy to operate characteristics was used to fabricate the Al2O3-black nickel composite solar selective surface on Al substrate and the Sol-gel technique was used to fabricated the anti-reflection (AR) layer.
The effects of the particle size(300 nm ,70 nm , 15 nm) and content(4 g/L , 8 g/L , 16 g/L , 24 g/L , 28 g/L) of Al2O3, the thickness of the Al2O3-Black nickel composite coatings and the AR layers of SiO2 and TiO2 on the optical properties of the absorbers were investigated.
The Uv/Vis/NIR spectrophotometer was utilized to measure the reflectance of the absorbers in the wavelength interval of 300 – 2500 nm, and the FTIR spectrometer was utilized to measure that in the wavelength interval of 2500 – 20000 nm. SEM and AFM were used to observe the surface morphologies and the thickness of coatings. The chemical structures of coatings were studied by ESCA. The environment durabilities including thermal stability and humidity resistance of the samples with optimized optical properties were performed..
The content of 300 nm alumina increases from 8 g/L to 28 g/L , the solar absorptance α of Al2O3-Black nickel/Al absorber increase from 0.69 to 0.79, the thermal emittance ε increase from 0.08 to 0.11. The content of 70 nm alumina increases from 8 g/L to 28 g/L , the solar absorptance α increase from 0.79 to 0.84, the thermal emittance ε increase from 0.13 to 0.20. The content of 15 nm alumina increases from 4 g/L to 16 g/L , the solar absorptance α increase from 0.81 to 0.86, the thermal emittance ε increase from 0.09 to 0.15. The 2.7 μm Al2O3-Black Nickel composite coatings contained 16 g/L of 15 nm alumina have optimum optic properties, solar absorptance α = 0.89 and low emittance ε = 0.07, and high selectivity factor 12.71. The solar absorptance and thermal emittance of the Al2O3-Black Nickel/Al absorbers with SiO2-0.5M AR layers are 0.92 and 0.09, respectively. Those of the Al2O3-Black Nickel/Al absorbers with TiO2 AR layers are 0.83 and 0.19, respectively.
The selectivity factor of Al2O3-Black Nickel/Al absorbers after 300 ℃thermal stability test for 75 h decreased from 12.71 to 9.4, and that of black Nickel/Al absorbers decreased from 17 to 4.84. After 95 % humidity condensation test for 75 h, the selectivity factor of Al2O3 - Black Nickel/Al absorbers decreased from 12.71 to 4.81, and that of Black Nickel/Al absorbers decreased from 17 to 5.61.
摘要...............................................i
Abstract...........................................ii
誌謝...............................................iv
總目錄.............................................v
表目錄.............................................viii
圖目錄.............................................x
第一章、緒論.......................................1
第二章、文獻探討...................................3
2.1 太陽能選擇性吸收膜原理........................3
2.1.1選擇性吸收膜之光學特性........................4
2.1.2選擇性吸收膜之性質量測與探討..................5
2.1.3太陽能選擇性吸收膜之分類......................7
2.1.4金屬-電介質吸收膜之製備方式..................12
2.2 無電鍍原理...................................18
2.2.1無電鍍特性...................................18
2.2.2無電鍍鎳鍍液其組成的成份及功能...............19
2.2.3無電鍍複合鍍原理.............................20
2.2.4無電鍍複合鍍鍍液穩定性.......................22
2.3 溶-凝膠(Sol-gel)原理.........................24
2.3.1抗反射層(Anti-reflective layer)之原理........25
2.3.2抗反射膜的設計原理...........................25
第三章、實驗步驟與分析分法........................30
3.1 實驗藥品和製程設備...........................30
3.2 分析儀器.....................................32
3.3 實驗步驟.....................................33
3.3.1試片前處理...................................33
3.3.2無電鍍沉積吸收膜.............................33
3.3.3 Al2O3-Black Nickel複合吸收膜之製備..........34
3.3.4抗反射層(Anti-reflection layer,AR layer)
之製備............................................35
3.3.4.1 Sol-gel製備TiO2抗反射層...................35
3.3.4.2 Sol-gel製備SiO2抗反射層...................35
3.4 光學性質分析.................................36
3.4.1吸收率(αsol)之量測...........................36
3.4.2熱輻射率(εtherm)之量測.......................36
3.5 吸收膜表面觀察及化學分析.....................36
3.5.1吸收膜氧化物表面形貌和截面之觀察.............36
3.5.2表面粗糙度之觀察.............................36
3.5.3表面化學分析.................................37
3.6 試片環境測試.................................37
3.6.1熱穩定測試...................................37
3.6.2抗水性測試...................................37
3.7 實驗流程.....................................38
第四章、實驗結果與討論............................46
4.1 Al2O3體積分率含量(Vol. %)對光學性質之影響.....46
4.2 Al2O3粒徑對光學性質之影響.....................58
4.3膜厚度對光學性質之影響.........................62
4.4增加抗反射層於Al2O3-Black Nickel複合吸收膜上之光學性質影響................................................72
4.4.1不同折射率之抗反射層對於光學性質影響.........72
4.4.2改變SiO2 抗反射層金屬前驅物莫耳濃度之
光學性質影響......................................75
4.4.3討論抗反射層不同厚度塗佈上Al2O3-Black Nickel複合吸收膜之光學性質影響....................................77
4.5 Al2O3-Black Nickel複合吸收膜之環境測試
分析鍍層的穩定性..................................83
4.5.1熱穩定測試...................................83
4.5.2凝結濕度測試.................................86
第五章、結論......................................97
參考文獻..........................................98
[1]張孝煒、張禮凱、陳文杰 , Solar Energy Technology一月專輯 , 電子月刊 , (12) 1 : 156 – 163
[2] Ewa Wäckelgård , Solar Energy Materials & Solar Cells 56 (1998) : 35 – 44
[3] Mónica Lira-Cantú , Angel Morales Sabio , Alex Brustenga , Pedro Gómez-Romero , Solar Energy Materials & Solar Cells 87 (2005) : 685 – 694
[4] Kil Dong Lee , Won Chae Jung , Jong Heon Kim , Solar Energy Materials & Solar Cells 63 (2000) : 125 – 137
[5] Purnima Richharia , Thin Solid Films 320 (1998) : 211 – 215
[6] C.E Barrera , L. Salgado , U.Morales , I. González , Renewable Energy 24 (2001) : 357 – 364
[7] K. Gelin , T. Boström , E. Wäckelgård , Solar Energy 77 (2004) : 115 – 119
[8] M.F. Shaffei , S.S. Abd El-Rehim , N.A. Shaaban , H.S. Huisen , Renewable Energy 23 (2001) : 489 – 495
[9] Rocío Bayón , Gema San Vicente , César Maffiotte , Ángel Morales , Renewable Energy 33(2008) : 348 – 353
[10]李金花、宋寬秀、王一平 , 化學工業與工程 , 2004 , (21) 6 : 432 – 437
[11]陳玨 , 真空科學與技 , 2005 , (20) 3 : 219 – 221
[12] C. Seiffert , T. Eisenhammer , M. Lazarov , R. Sizmann , and R. Blessing , “ Test facility for solar selective materials , ” ISES Solar World Congress , 2 , 321 (1993).
[13] J.A. Duffie , W.A. Beckman , Solar Engineering of Thermal Processes , Wiley.Interscience , New York , 1991.
[14]余並梅、浦紹選、曾言行 , 雲南師範大學學報 , 2003 , (23) , 增刊︰50 – 53
[15] J. Richard Christman , Fundamentals of Solid State Physics , (October 27 , 1987)
[16] O.P. Agnihotri , B.K. Gupta , Solar Selective Surfaces, (Wiley . Interscience Pub , New York , NY , 1981) : p.126.
[17]胡文旭 , 太陽能學報 , 2001 , (22) 4 : 443 – 447
[18]玻恩 ﹐ M.E. 沃耳夫著 ﹐ 楊葭蓀等譯校 : 《光學原理》 ﹐上冊) , 電子工業出版社 (2005)
[19] J. Vince , A.Surca. Vuk , O.Opara. Krasovec , B. Orel , M. Kohl, M. Heck, Solar Engery Mater. Solar Cells 79 (2003) : 313.
[20] M. Nishimura , T. Ishiguro , Mater. Trans. 43 (2002) 2073.
[21] M. Lazarov , P. Raths , H. Metzger , W. Spirkl , J. Applied Phy. 77 (1995) 2133.
[22] Claes G. Granqvist , Volker Wittwer. Materials for solar energy conversion: An overview, Energy Mater. Solar Cells 54(1998) : 39.
[23]蔣德源 , 新能源 , 2000 , 22 (6) : 39 – 44
[24] M. Kussmaul , M.J. Mirtich , A. Curren , “ Ion beam treatment of potential space materials at the NASA Lewis Research Center , ” Surface & Coatings Technol. 51 , 299 (1992).
[25] J.J. Cuomo , J.F. Ziegler , J.M. Woodall , “ A new concept for solar energy thermal conversion , ” Appl. Phys. Letters , 26 , 10 , 557 (1975).
[26] R.B. Bannerot , “ Moderately concentrating (not focusing) solar energy collectors , ” S.L. Sargent , ed. , Proceedings of the Workshop on Solar Collectors for Heating and Cooling of Buildings , (ASME , New York , NY , 1974) p. 306.
[27] M. Koltun , G. Gukhman , A. Gavrilina , Solar Engery Mater. Solar Cells 33 (1994) 41.
[28]胡萬里、李長友 , RENEWABLE ENERGY , 2005 , 121 (3) : 44 –46
[29] A.R. Shashikala , A.K. Sharma , D.R. Bhandari , Solar Energy Materials & Solar Cells 91 (2007) 629 – 635
[30] G. E. McDonald , Solar Engery 17 (1975) 119.
[31] Vishal Saxena , R. Uma Rani. , Surface & Coatings Technology. , 201 (2006) 855.
[32] N. Vasudevan , V.K. William Grips , I. Rajagopal , Surf. Technol. 14 (1981) 119.
[33] P.O. May , O.T. Inal , I.H. Guindiler , Sol. Energy Mater. 9 (1983) 253.
[34] S. Visitserngtrakul , Sol. Energy Mater. 21 (1990) 1.
[35] V.K. William Grips , I. Rajagopal , B. Laxmeshwar , Metal Mater.
Process. 5 (1994) 269.
[36] P.J. Sebastian , J. Quintana , F. Avila , Sol. Energy Mater. Sol. Cells 45 (1997) 65.
[37] S. Surviliene , L. Orlovskaja , S. Biallozor , Surf. Coat. Technol. 122 (1999) 235.
[38] (a) P.K. Gogra , K.L. Chopra , Sol. Energy 23 (1979) 405 ;
(b) P.K. Gogna , K.L. Chopra , Thin Solid Films 57 (2) (1979) 299.
[39] K.J. Kathro , Sol. Energy Mater. 5 (1981) 317.
[40] W. Wieczerniak , R.A. Tremmel , Plat. Surf. Finish. 69 (1982) 90.
[41] W. Wieczerniak , R.A. Tremmel , Galvonotechnik 74 (1983) 25.
[42] O.D. Wanjari , Proc. of SPIE 21 (1990) 1.
[43] S.K. Sharma , N.C. Mehra , Thin Solid Films 213 (1) (1992) 80.
[44] M. Koltun , G. Gukhman , A. Gavrillina , Sol. Energy Mater. Sol. Cells 33 (1994) 41.
[45] S. John , Met. Finish. 95 (1997) 84.
[46] E. Wackelgard , Sol. Energy Mater. 17 (1998) 119.
[47] M. Lira-Cantu , A. Morales Sabio , A. Brustenga , P. Gómez - Romero , Sol. Energy Mater. Solar Cells 87 (1–4) (2005) 685.
[48] E. Barrera , G.T. Viveros , U. Morales , World Renewable Energy Congress , vol. II , Pergamon , Denver , 1996 , p. 733.
[49] S. Jhon , N. Nagarani , S. Rajendran , Sol. Energy Mater. 22 (1991) 293.
[50] E. Barrera , I. Gonzalex , T. Viversos , Sol. Energy Mater. 51 (1998) 69.
[51] J. Hajdu , F. Brindiel , AES Coatings for Solar Collectors , Atlant, 1976.
[52] S.E. Harstorm , S.E. Kjarlsson , A. Roos , B. Westerstrandh , K. Kamf , Sol. Energy Mater. Sol. Cells 9 (1984) 367.
[53] P. Richharia , Sol. Energy Mater. 20 (3) (1990) 199.
[54] A. Anderson , O. Hunderi , C.G. Granqvist , J. Appl. Phys. 51 (1980) 754.
[55] S.N. Kumar , L.K. Malhotra , K.L. Chopra , Sol. Energy Mater. 7 (1983) 439.
[56] T. Moller , D. Honicke , Sol. Energy Mater. Sol. Cells 54 (1998) 397.
[57] S. Suzer , F. Kadirgan , H.M. Sohmen , A.J. Wetrherilt , I.E. Ture , Sol. Energy Mater. Sol. Cells 52 (1998) 55.
[58] T. Tesfamichael , A. Roos , Sol. Energy Mater. Sol. Cells 54 (1998) 213.
[59]文明芬、郭忠誠、余霄、楊顯萬 , 太陽能 , 1998 , (4)︰18 – 19
[60] T Tesfamichael , A Roos. Treatment of antireflection on tin oxide coated anodized aluminum selective absorber surface. Solar Energy Materials and Solar Cells , 1998 , 54 : 213.
[61] H. S. Varol , A. Hinsch , Solar Engery Mater. Solar Cells 40 (1996) 273.
[62] M.F. Shaffei , S.S Abd El-Rehim , N.A. Shaaban , H.S. Huisen , Renewable Energy 23 (2001) 489 – 495.
[63] Roos A , Georgson M. Solar Energy Materials , 22 (1991) : 29 – 41.
[64] Roos A , Georgsonm , Wäckelgård. Solar Energy Materials , 22 (1991) : 15 – 28 .
[65] T. Boström , E. Wäckelgård , G. Westin , Solar Energy 74 (2003) : 497 – 503.
[66] Tobias K. Boström , Ewa Wäckelgård , Gunnar Westin , Solar Energy Materials & Solar Cells 84 (2004) : 183 – 191.
[67] Tobias K. Boström , Ewa Wäckelgård , Gunnar Westin , Solar Energy Materials & Solar Cells 89 (2005) : 197 – 207.
[68] T. Boström , G. Westin , E. Wäckelgård , Solar Energy Materials & Solar Cells 91 (2007) : 38 – 43.
[69] G. Katumba , L. Olumekor , A. Forbes , G. Makiwa , B. Mwakikunga , J. Lu , E. Wäckelgård , Solar Energy Materials & Solar Cells 92 (2008) : 1285 – 1292.
[70] M.E. Rincón , J.D. Molina , M. Sánchez , C. Arancibia , E. García , Solar Energy Materials & Solar Cells 91 (2007) : 1421 – 1425.
[71] Rocío Bayón , Gema San Vicente , César Maffiotte , Ángel Morales , Renewable Energy 33 (2008) : 348 – 353.
[72] M. Mwamburi , E. Wäckelgård , A. Roos , Thin Solid Films 374 (2000) : 1.
[73] G.E. Carver , E.E. Chain , J. Physique , Collogue C1. Suppl. 1 , 42 , C1. 203 (1981).
[74] Berghaus A , Djahanbakhsh A , Thomas L K . Characteirs ation of CVD – tungsten – aluminac ermets for high – temperature selective absorbers. Solar Energy Materials and Solar cells , 54 (1998) : 19 – 26.
[75] T. Möller , D. Hönicke. Solar selective properties of electrodeposited thin layers on aluminium. Energy Mater. Solar Cells , 54 (1998) : 397.
[76] S. Süzer , F. Kadirgan. et al. Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors. Energy Mater. Solar Cells , 52 (1998) : 55.
[77] M. Adsten , R. MJoerger , K. Jäyyendahl , E. Wäckelgård , Solar Engery 68 (2000) : 325.
[78] M. Farooq , A.A. Green , M.G. Huchins , Solar Energy Materials & Solar Cells. 54 (1998) : 67 – 73.
[79] Alexander S Mukasyan , Dynamics of structure formation during electroless plating of thin metal.ceramic composite membranes , (1998).
[80]胡文彬、劉磊等, 難鍍基材的化學鍍鎳技術 , 化學工業出版社 , p1 – p13
[81]賴婉綺 , 2003 ,“矽基材無電鍍鎳界面擴散之研究”, 逢甲大學材料科學研究所碩士論文 , 楊聰仁
[82]王柏春、許向陽、翟海軍,材料導報,2005,19(6)︰71-74
[83]張鳳橋 , 季孟波 , 李蘭蘭 , 魏子棟 , 電鍍與精飾 , 2005 , 27 (6) : 18 – 23
[84]閆洪.現代化學鍍鎳和複合鍍新技術.北京 : 國防工業出版社 , 2001. 3 – 5
[85] J.J. Ebelmem , Ann. , 57 , 311 (1846).
[86]李正中, 薄膜光學與鍍膜技術 , 編著藝軒出板社
[87] C.G. Ribbing , On the selection of oxides for metal-based tandem absorbers , Thin Solid Films 116 (1984) : 341 – 349.
[88]謝培煥 , 2002 , “鎳-氧化鋁複合電鍍行為對鍍層性質之影響” , 成功大學化學工程學系研究所碩士論文 , 楊明長
[89]王紀雯 , “複合電鍍之簡介” , 材料與社會 , 第32期 (1989) : p37
[90]黃群武 , 王一平 , 韓立君 , 太陽能學報 , 2007 , 28 (11) : 1217 – 1220
[91] Kil Dong Lee , Won Chae Jung , Jong Heon Kim , Solar Energy Materials & Solar Cells 63 (2000) : 125 – 137.
[92] S. Wernick , R. Pinner , The Surface Treatment and Finishing of Aluminium and its Alloys , Robert Draper Ltd , Teddington , vol. 2. 1972.
[93] Guangming Wu , Jue Wang , Jun Shen , Tianhe Yang , Qinyuan Zhang , Bin Zhou , Zhongsheng Deng , Bin Fan , Dongping Zhou , Fengshan Zhang , Materials Science and Engineering B78 (2000) 135 – 139.
[94] Walter F. Bogaerts , Carl M. Lampert , Jougnal of materials science , 18 (1983) 2847 – 2875.
[95] Y.M. Lu , J.S. Yang , Journal of Materials Science and Engineer , 34 , (2002) , 79 – 84.
[96] H. Sato , T. Minami , S. Takata , T. Yamada , Thin Solid Films 236 (1993) 27.
[97] Ewa Wäckelgård , Solar Energy Materials and Solar Cells 54 (1998) 171 – 179.
[98] C.N. Tharamani , S.M. Mayanna , Solar Energy Materials & Solar Cells 91 (2007) 664 – 669.
[99] E.D. Palik , Handbook of Optical Constants of Solids , AcademicPress Inc. , Orlando , 1985.
[100] K.N. Srinivasan , N.V. Shanmugam , M. Selvam , S. John , B.A. Shenoi , Energy Convers , 24 (1984) : 255 – 258.
[101] K. Gelin , Preparation and Characterization of Sputter Deposited Spectrally Selective Solar Absorbers , Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. : p47.
[102] J.S. Vaishya , T.C. Tripathi , Energy Convers , 26 , (1986) : 291.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔