跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 03:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃啟銘
研究生(外文):Ci-Ming Huang
論文名稱:具凸塊熱源之模組於三維機匣中自然對流熱傳特性及散熱性能增進之研究
論文名稱(外文):Natural Convection Heat Transfer Characteristics and cooling Performance Enhancement for a Module with Block Heat Sources in a Three Dimensional Cabinet
指導教授:蔡永利蔡永利引用關係
指導教授(外文):Yeong-Ley Tsay
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:航空與電子科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:57
中文關鍵詞:3D機匣自然對流熱交互作用發熱塊散熱鰭片通氣孔
外文關鍵詞:3-D cabinetNatural convectionThermal interactionBlock heat sourcesfinair vent
相關次數:
  • 被引用被引用:1
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在針對具有陣列分佈之間隔凸塊熱源的模組,探討該模組於三維機匣的自然對流熱傳特性及散熱性能增進,主要目標有兩方面,首先研究機匣內部流體與機匣外界流體之熱交互作用對於自然對流流場結構、溫度分佈及鈕賽爾數的影響;其次,在三維機匣壁面設置通氣孔,討論通氣孔之煙囪效應對於熱源模組散熱性能提升之效應。
本論文係以數值方法進行嚴謹的模擬,計算區域包括機匣內部及其外界周圍,而機匣壁面之溫度及熱通量並非已知,乃於求解過程中獲得;另外,為驗證數值結果的準確性,本研究亦建置一實驗系統以量測凸塊熱源之表面溫度。比較數值模擬與實驗量測之數據,兩者相對誤差範圍為11.1%~22.5%。
本研究所獲結果顯示熱交互作用以及通氣孔對於機匣內之熱源模組的影響非常顯著。當Pr=0.7、104≦Ra≦106、100 ≦Kbf = Kpf = Kwf ≦ 1000、Kff = 8000時,有無考慮封閉機匣內部流體與外界環境進行熱交互作用,熱源模組之熱點溫度相差高達24.5%;當在機匣壁面上建置通氣孔,其熱點溫度可減少達30.5%;另外,在基板背面按裝散熱鰭片且建置通氣孔,其熱點溫度可降低52%。
This study aims to investigate natural convection heat transfer characteristics and cooling performance enhancement for a module with block heat sources in a three dimensional cabinet. The major objective of this study has two aspects. First, efforts are performed to examine the influences of thermal interaction between the fluids inside and outside the cabinet on the flow structure, temperature distribution and Nu number. Second, air vents are proposed to construct in the three dimensional cabinet wall, attentions are paid to conduct the enhancement of cooling performance of the block heat sources.
The numerical computation domain covers the cabinet and surrounding area, the temperature and heat flux on the cabinet surface are not previously known and have to be found in the solution processes, In addition, in order to verify the numerical simulation, this study has set up an experimental system. The difference in surface temperature of block between the numerical and experimental data is within 11.1%~22.5%.
The maximum difference in hot spot temperatures of the blocks for the situations with and without consideration of thermal interaction can be up to 24.5 % as Pr = 0.7, 104≦Ra≦106, 100≦Kbf = Kpf = Kwf = 1000 and Kff = 8000. When air vents are constructed in the cabinet wall, the hot spot temperature can be reduced by 30.5 %. In addition, when fin is constructed on the back side of the board for the ventilated cabinet, the hot spot temperature can be reduced by 52 %.
中文摘要………………………………………………………………i

英文摘要………………………………………………………………ii

誌謝……………………………………………………………………iii

目錄……………………………………………………………………iv

圖目錄…………………………………………………………………vi

表目錄…………………………………………………………………x

符號說明………………………………………………………………xii

第一章 緒論…………………………………………………………1
1.1 研究動機與目的 ………………………………………………1
1.2 文獻回顧 ………………………………………………………2
第二章 理論分析……………………………………………………5
2.1 物理模型 ………………………………………………………5
2.2統御方程式及邊界條件…………………………………………6
第三章 研究方法……………………………………………………9
3.1 數值模擬……………………………………………………… 9
3.2 實驗量測……………………………………………………… 10
3.3數值模擬與實驗量測之數據比較………………………………12
第四章 結果與討論…………………………………………………13
4.1封閉機匣…………………………………………………………13
4.2機匣壁面建置通氣孔結論………………………………………16
第五章 結論與建議…………………………………………………23
5.1結論………………………………………………………………23
5.2建議………………………………………………………………24
參考文獻 ……………………………………………………………51
Extended Abstract…………………………………………………54
作者自述 ……………………………………………………………57
[1]Heindel, T.J., Ramadhyani, S., Incropera, F.P., Laminar natural convection in a discretely heated cavity: Ⅰ- assessment of three-dimensional effects, ASME J. Heat Transfer 117,(1995a) pp. 902-909.
[2]Heindel, T.J., Ramadhyani, S., Incropera, F.P., Laminar natural convection in a discretely heated cavity: Ⅱ - comparisons of experimental and theoretical results, ASME J. Heat Transfer 117, (1995b)pp. 910-917.
[3]Tou, S.K.W., Tso, C. P., Zhang, X. F., 3-D numerical analysis of natural convection liquid cooling of a 3 × 3 heater array in rectangular enclosures, Int. J. Heat Mass Transfer 42,(1999)pp. 3231-3244.
[4]Tou, S.K.W., Zhang, X. F., Three-dimensional numerical simulation of natural convectin in an inclined liquid-filled enclosure with an array of discrete heaters, Int. J. Heat Mass Transfer 46,(2003)pp. 127-138.
[5]Dias, T. and Milanez, L. F. Optimal location of heat sources on a vertical wall with natural convective through genetic algorithms Int. J. Heat Mass Transfer, Vol. 49,(2006) pp. 2090-2096.
[6]A. Bazylak, N. Djilali, D. Sinton, Natural convection in an enclosure with distributed heat sources, Numer. Heat Transfer, Part A, Vol. 49,(2006)2090-2096.
[7]Y. Ju, Z. Chen, Numerical simulation of natural convection in an enclosure with discrete protruding heaters, Numer. Heat Transfer, Part A, Vol. 30,(1996)207-218.
[8]Liu, Y., Phan- Thien, N., Leung, C. W., Chan, T. L., An optimum spacing problem for five chips on a horizontal substrate in a vertically insulated enclosure, Computation Mechanics Vol. 24,(1999) pp. 310-317.
[9]S.B. Sathe, Y. Joshi, Natural convection arising from a heat generating substrate-mounted protrusion in a liquid-filled two-dimensional enclosure, Int. J. Heat Mass Transfer 34, (1991)pp. 2149-2163.
[10]S.B. Sathe, Y. Joshi, Natural convection liquid cooling of a substrate-mounted protrusion in a square enclosure: a parametric study, ASME J. Heat Transfer 114, (1992)pp. 401-409.
[11]J. Y. Oh, M. Y. Ha, K. C. Kim, Numerical study of heat transfer and flow of natural convection in an enclosure with a heat-generating conducting body, Numer. Heat Transfer. Part A, Vol. 31,(1997)289-303.
[12]J. P. Abraham, E. M. Sparrow, Three-dimensional laminar and turbulent natural convection in a continuously/discretely wall-heated enclosure containing a thermal load, Numer. Heat Transfer, Part A, Vol. 44,(2003)105-125.
[13]H. F.Oztop, E. Bilgen, Natural convection in differentially heated and partially divided square cavities with internal heat generation, Int. J. Heat Fluid Flow Vol. 27, (2006)pp. 466-475.
[14]Y. Varol, H. F. Oztop, T. Yilmaz, Natural convection in triangular enclosures with protruding isothermal heater, Int. J. Heat Mass Transfer, Vol. 50,(2007) pp. 2451-2462.
[15]A. K. Santra, D. Misra, S. Ray, Analysis of laminar natural convection form a discrete isothermal flush heater mounted on the side wall of a partially open rectangular enclosure, Numer. Heat Transfer, Part A, Vol. 29,(1996)211-225.
[16]T. H. Hsu, K. Y. Hong, Natural convection of micropolar fluids in an open cavity, Numer. Heat Transfer, Part A, Vol. 50,(2006)281-300.
[17]A. Koca, Numerical analysis of conjugate heat transfer in a partially open square cavity with a vertical heat source, Int. Commun. Heat Mass Transfer, Vol. 35,(2008)1385-1395.
[18]E. Papanicolaou, Y Jaluria, Mixed convection from simulated electronic components at varying relative positions in a cavity, ASME J. Heat Mass Transfer, Vol. 116,(1994)960-970.
[19]T. H. Hsu, S. G. Wang, Mixed convection in a rectangular enclosure with discrete heat sources, Numer. Heat Transfer, Part A, Vol. 38,(2000)627-652.
[20]Y. Kitamura, M Ishizuka, S. Nakagawa, K. Koizumu, Study on natural air-cooled electronic equipment casings of the chimney effect under inclination with outlet openings, 17th Int. Symposium on Transport Phenomena, Toyama, JAPAN,(2006).
[21]S.V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980
[22]J.P. Van. Doormaal and G.D. Raithby, Enhancements of the SIMPLE Method for Predicting incompressible Fluid Flows, Numerical Heat Transfer, Vol.7, pp. 147-163, 1984
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊