跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:白桂霖
研究生(外文):Kuei-Lin Pai
論文名稱:運用混合微分轉換法求解薄膜受超短脈衝雷射作用之研究
論文名稱(外文):An Application of the Hybrid Differential Transform Method for Studying a Thin Film Exposed to Ultrashort Pulsed Lasers
指導教授:駱正穎駱正穎引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:航空與電子科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:70
中文關鍵詞:超短波脈衝雷射熱變形微分轉換法二階段雙曲線
外文關鍵詞:Ultrashort-pulsed lasersthermal deformationdifferential transform methodtwo-step hyperbolic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超短波脈衝雷射廣泛應用在工程領域,尤其在微尺寸的元件或系統製造過程。研究超短波脈衝雷射引起的熱變形是為了避免熱損壞。本文運用微分轉換混合有限差分法求解於薄膜受超短脈衝雷射作用下之熱變形研究,採用之數學模型為二階段雙曲線熱傳模式。首先利用微分轉換法將時域之系統統御方程式轉換成頻域之方程式,而後再對轉換後統御方程式於空間域進行有限差分離散化,最後經由疊代法求解後,再以數值逆微分轉換求取系統變數。微分轉換法的優點是可將線性或非線性微分方程轉換成疊代方程式,並可將邊界條件,經過轉換後簡化為初始值條件。本文提供短脈衝雷射加工之條件下,工件之晶格溫度,電子溫度,熱通量與應變之全場解。研究結果說明晶格溫度和應變之間耦合的效果,以及各材料與加工參數之影響。經由選取適當的差分格點數,並能有效抑制位於熱傳波前的數值震盪現象發生。本文亦展示了微分轉換混合有限差分法可有效地運用於二階段雙曲線熱傳方程式。
Ultrashort-pulsed lasers have been extensively applied in engineering problems, especially in the manufacture of micro size parts or systems. Studying the thermal deformation induced by ultrashort-pulsed lasers is important for preventing thermal damage. This article presents an application of the hybrid differential transform and finite difference method for studying thermal deformation in a thin film exposed to ultrashort pulsed lasers. The mathematic model of the problem is based on two-step hyperbolic transfer equations. Firstly, the differential transform technique is used to transform the governing equations as well as boundary conditions from the time domains into the spectrum domain. Secondly, the resulting transformed equations are discretized by the finite difference method. Thirdly, the spectrum functions are determined through a recursive procedure. Finally, all system variables are obtained by using the numerical inversion of differential transform. The merit of the present method lies on the transformation of differential equation into the recursive forms which are much easier to solve systematically. The present study obtains the full field solutions of electronic temperature, lattice temperature, heat flux stresses and strains of a thin film in the manufacturing process. It accounts for the coupling effects between lattice temperature and strain rate, as well as for the hot-electron-blast effect in momentum transfer .The numerical oscillations which often arise in the vicinity of sharp discontinuities can be successfully suppressed with an appropriate grid number used in the model. The thesis demonstrates the feasible application of the hybrid differential transform technique in solving the two-step hyperbolic heat transfer problems.
中文摘要………………………………………………………………………………I
英文摘要………………………………………………………………………………Ⅱ
誌謝…………………………………………………………………………………Ⅲ
總目錄………………………………………………………………………………Ⅳ
圖目錄…………………………………………………………………………………Ⅵ
表目錄………………………………………………………………………………Ⅹ
符號說明……………………………………………………………………………iv
第一章 序論………………………………………………………………………1
1.1 研究背景與動機……………………………………………………………1
1.2 論文架構……………………………………………………………………2
第二章 文獻回顧……………………...……………………………….……..…….3
2.1熱傳導方程式之文獻回顧……………...…………………………………..3
2.2 Two-Step Model熱傳導方程式之文獻回顧……..……………….………..4
2.3微分轉換法之文獻回顧…………………………………………………….6
第三章 微分轉換法…………...……………………………………………………7
3.1微分轉換之基本定義……………………………………...……………..…7
3.2 微分轉換的運算法則………………………...…….……………………....8
3.3 微分轉換法運用……………...…………………………………………...10
第四章 短脈衝雷射加工問題…………...………………………………………..12
4.1 短脈衝雷射加工模型…….....………………………..……………...……12
4.2問題定義與統御方程式……………...……………………………………14
第五章 數學方法……………...…………………………………………………..18
5.1時域之微分轉換…...……………………………………………………....19
5.2空間域有限差分離散化……...…………………………………………....21
5.3初始條件與邊界條件之處理..……………….…………………………....23
5.4求解程序.……………………………………………………..…………....25
第六章 二階段熱傳分析結果與討論……………………………...…………......28
6.1時間增量與空間格點之決定………………………………...…………....28
6.2熱傳分析.……………………………………………………..…………....30
6.3熱應變分析.…………………………………………………..…………....36
第七章 結論……………...………………..............................................................60
參考文獻…………...……...……………….............................................................61
Extended Abstract..……...………………................................................................66
作者自述……………...……………………………………………………………70
[1]Fourier, J. B., Theorie analytique de la Chaleur, Paris, (1822), English translation by A. Freeman, Dover publications, Inc., New York,1959.
[2]Cattaneo , C., Compte . Rendus , vol. 247, pp. 431-433, 1958.
[3]Vernotte, P., “Les Paradoxes de la Theorie Continue de equation de laChaleur,” Compte. Rendus, vol. 246, pp. 3154-3155, 1958.
[4]Vernotte, P., “Some Possible Complication in the Phenomena of Thermal Conduction,” Compte. Rendus, vol. 252, pp. 2190-2191, 1961
[5]Tzou, D. Y., “On the Thermal Shock Wave Induced by a Moving Heat Source,” ASME Journal of heat transfer, vol. 111, pp.232-238, 1989.
[6]Tzou, D. Y.,Thermal Shock Phenomena Under High-Rate Response in Solid, Hemisphere, Washington, DC, 1992.
[7]Tzou, D. Y., “A unified approach for heat conduction from macro- to micro-scales,” Journal of Heat Transfer, vol. 117, pp.8-16, 1995.
[8]Tzou, D. Y., Macro- to Micro-scale Heat Transfer: The Lagging Behavior. Taylor and Francis, Washington, DC, 1997.
[9]Al-Nimr, M. A., Khadrawi, A. F., “Thermal Behavior of a Stagnant Gas Confined in a Horizontal Microchannel as Described by the Dual-Phase-Lag Heat Conduction Model,” International Journal of Thermophysics, vol. 25, no. 6, pp.1953-64, 2004.
[10]Anisimov, S. I., Kapeliovich, B. L., Perel’man, T. L., “Electron emission from metal surfaces exposed to ultra-short laser pulses,”Soviet Physics, JETP39, pp. 375-377, 1974.
[11]Qiu, T. Q., Tien, C. L., “Short-pulse laser heating on metals,”International Journal of Heat and Mass Transfer, vol. 35, pp.719-726, 1992.
[12]Qiu, T. Q., Tien, C. L., “Heat transfer mechanisms during short-pulse laser heating of metals,” Journal of Heat Transfer, vol, 115, pp.835-841, 1993.
[13]Tzou, D. Y., Ozisik, M. N., Chiffelle, R. J., “The Lattice Temperature in the Microscopic Two-Step Model,” ASME Journal of heat transfer, vol. 116, pp.1034-1038, 1994.
[14]Jiang, L, Tsai, H.L., “Improved Two-Temperature Model and Its Application in Ultrashort Laser Heating of Mental Films, ” ASME Journal of Heat Transfer,vol. 127, pp. 1167-1173, 2005.
[15]Chen, J. K., Tzou, D. Y., Beraum, J. E., “A Semiclassical Two-Temperature Model for Ultrafast Laser Heating,” International Journal of Heat and Mass Transfer, vol. 49, pp. 307-316, 2006.
[16]D. Y. Tzou, J. K. Chen, and J. E. Beraun, Hot-Electron Blast Induced by Ultrashort-Pulsed Lasers in Layered Media, Int. J. Heat Mass Transfer, vol. 45, pp. 3369–3382, 2002.
[17]J. K. Chen, J. E. Beraun, and C. L. Tham, Comparison of One-Dimensional and Two-Dimensional Axisymmetric Approaches to the Thermomechanical Response Caused by Ultrashort Laser Heating, J. Opt. A: Pure Appl. Opt., vol.4, pp. 650–661, 2002.
[18]H. Wang, W. Dai, R. Nassar, and R. V. N. Melnik, A Finite Difference Method For Studying Thermal Deformation in a Thin Film Exposed to Ultrashort-Pulsed Lasers,Int. J. Heat Mass Transfer, vol. 49, pp. 2712–2723, 2006.
[19]H. Wang, W. Dai, and R. V. N. Melnik, A Finite Difference Method for Studying Thermal Deformation in a Double-Layered Thin Film Exposed to Ultrashort-Pulsed Lasers, Int. J. Thermal Sci., vol. 46, pp. 1179–1196, 2006.
[20]H. Wang, W. Dai, and L. G. Hewavitharana, A Finite Difference Method for Studying Thermal Deformation in a Double-Layered Thin Film with Imperfect Interfacial Contact Exposed to Ultrashort-Pulsed Lasers, Int. J. Thermal Sci.,vol. 47, pp. 7–24, 2008.
[21]S. Zhang, W. Dai, H. Wang, and R. V. N. Melnik, A Finite Difference Method for Studying Thermal Deformation in a 3D Thin Film Exposed to Ultrashort Pulsed Lasers, Int. J.Heat Mass Transfer, vol. 51, pp. 1979–1995, 2008.
[22]X. Du and W. Dai, A Finite Difference Method for Studying Thermal Deformation in a 3-D Micro-Sphere Exposed to Ultrashort Pulsed Lasers, Numer. Heat Transfer A, vol. 53,pp. 457–484, 2008.
[23]T. Q. Qiu and C. L. Tien, Heat Transfer Mechanisms during Short-Pulse Laser Heating of Metals, ASME J. Heat Transfer, vol. 115, pp. 835–841, 1993.
[24]M. A. Al-Nimr, O. M. Haddad, and V. S. Arpaci, Thermal Behavior of Metal Films—A Hyperbolic Two-Step Model, Heat Mass Transfer, vol. 35, pp. 459–464, 1999.
[25]M. A. Al-Nimr and V. S. Arpaci, The Thermal Behavior of Thin Metal Films in the Hyperbolic Two-Step Model, Int. J. Heat Mass Transfer, vol. 43, pp. 2021–2028, 2000.
[26]M. Al-Odat, M.A. Al-Nimr, and M. Hamdan, Thermal Stability of Superconductors under the Effect of a Two-Dimensional Hyperbolic Heat Conduction Model, Int. J.Numer. Meth. Heat Fluid Flow, vol. 12, pp. 173–177, 2002.
[27]M. Naji, M. A. Al-Nimr, and M. Hader, The Validity of Using the Microscopic Hyperbolic Heat Conduction Model under Harmonic Fluctuating Boundary Heating Source, Int. J. Thermophys., vol. 24, pp. 545–557, 2003.
[28]M.A. Al-Nimr and M. K. Alkam, Overshooting Phenomenon in the Hyperbolic Microscopic Heat Conduction Model, Int. J. Thermophys., vol. 24, pp. 577–583, 2003.
[29]J. K. Chen and J. E. Beraun, Numerical Study of Ultrashort Laser Pulse Interactions with Metal Films, Numer. Heat Transfer A, vol. 40, pp. 1–20, 2001.
[30]趙家奎,微分轉換及其在電路中的應用,華中理工大學出版社 1986.
[31]C.L. Chen, Y.C. Liu, Solution of two-boundary-value-problems using the differential transform method, Journal of Optimization Theory and Application, 99, pp. 23-35, 1998.
[32]M.J. Jang, C.L. Chen, Y.C. Liu ,Two-dimensional differential transform for partial differential equations, Applied Mathematics and Computation,121, pp. 261-270, 2001.
[33]C.K. Chen, S.H. Ho, Application of Differential Transformation to Eigenvalue problem, Applied Mathematics and Computation, Vol.79, pp.173-188, 1996.
[34]C.K Chen, S.H. Ho, Free Vibration Analysis of non-uniform Timoshenko Beams Using Differential Transform, Applied Mathematical modeling,Vol.22, No.4-5, pp.219-234, 1998a.
[35]L.T Yu, C.K. Chen, The Solution of the Blasius Equation by the Differential Transform method, Math. Comput. Modeling, Vol. 28, No.1, pp. 101-111, 1998.
[36]J.S. Chiou, J.R. Tzeng Application of Taylor Transformation to Nonlinear Vibration Problems, Trans. ASME, J of Vibration and Acoustics, Vol. 118, pp. 83-87, 1996.
[37]L.T. Yu, C.K Chen, Application of Taylor Transformation to Optimize Rectangular Fins with Variable Thermal parameters, Applied Mathematical Modeling, 22, pp.11-21, 1998.
[38]朱心平著,應用微分轉換法於強非線性物理系統之研究,國立成功大學機械 工程學系博士論文,2004.
[39]G.F. Cary, M. Tasi Hyperbolic heat transfer with reflection, Numerical Heat transfer, Vol.5, pp. 309-327, 1982.
[40]D.E. Glass, M.N. Özişik, D.S McRae and B. Vick, On the numerical solution of hyperbolic heat conduction, Numer. Heat transfer, 8, pp. 497-504,1985.
[41]Brorson, S.D., Fujimoto, J.G., and Ippen, E.P., “Femtosecond Electron Heat-transport Dynamics in Thin Gold Film,” Phys. Rev.B43, pp.1962 -1965, 1987.
[42]Stuart, B. C., Feit, M. D., Herman, S., Rubenchik, A. M., Shore, B. W., Peery, M. D., “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc., vol.13(B), pp.459-468, (1996)
[43]Qiu, T.Q., Juhasx, T., Suarez, C., Bron, W. E., Tien, C. L., “Femtosend Laser Heating of Multi-layer Metals-II. Experiments,” Int. J. Heat Mass Transfer, vol. 37, pp.2799-2808, 1994.
[44]Ibrahim, W. M. G., Elsayed-Ali, H. E., Bonner Jr., C. E., Shinn, M.,“Ultrafast Investigation of Electron Dynamics in Multi-layer Metal,”Int. J. Heat Mass Transfer, vol. 47, pp.2261-2268, 2004.
[45]H. Reismann and P.S. Pawlik, Elasticity, Theory and Applications,p.135, Wiley,New York, 1980.
[46]J. K. Chen, W. P. Latham, and J. E. Beraun, Axisymmetric Modeling of Femtosecond- Pulse Laser Heating on Metal Films, Numer. Heat Transfer B, vol. 42, pp. 1–17, 2002.
[47]J. K. Chen, J. E. Beraun, and C. L. Tham, Investigation of Thermal Response Caused by Pulsed Laser Heating, Numer. Heat Transfer A, vol. 44, pp. 705–722, 2003.
[48]S.I. Anisimov, B.L. Kapeliovich, and T.L. Perel’man, Electron Emission from Metal Surfaces Exposed to Ultrashort Laser Pulses, Sov. Phys. JETP, vol. 39, pp.375–377, 1974.
[49]T.Q. Qiu and C.L. Tien, Short-Pulse Laser Heating on Metals, Int. J. Heat Mass Transfer, vol. 35, pp. 719–726, 1992.
[50]D.Y. Tzou, Macro to Micro Heat Transfer, The Lagging Behavior, Chap. 5, Taylor & Francis, Washington, DC, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top