跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/07/30 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:佟偉祥
研究生(外文):Wei-Xiang Tung
論文名稱:1.5伏特十位元管線式類比數位轉換器
論文名稱(外文):1.5V 10-bits Pipelined Analog-to-Digital Converter
指導教授:呂啟彰
指導教授(外文):Chi-Chang Lu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:124
中文關鍵詞:管線式類比數位轉換器米勒電容式取樣保持電路
外文關鍵詞:Pipelined ADCMiller-capacitance-based S/H circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著影像處理與通訊系統的快速發展,高解析度的類比數位轉換器常被應用在這些前端接收路徑之中,另一方面近年來個人可攜式電子產品的成長,對於類比數位轉換器的功率消耗需求越來越嚴苛,所以在解析度和功率消耗的考量下,眾多種類的高速類比數位轉換器架構當中,管線式類比數位轉換器是一個很好的選擇。管線式類比數位轉換器擁有速度快、解析度高及功率消耗低的優點,因此能達到高速的輸入性能和快速的處理能力。在本論文中,將針對管線式類比數位轉換器做設計,並在前端取樣保持電路的設計上使用米勒電容效應的方法,此技術在取樣模式與保持模式下提供兩種不同的等效電容值,使得電路的取樣速度與精確度皆可以得到改善。
在論文中,使用TSMC 0.35um 2P4M的製程,實現一個電源電壓為1.5V,取樣頻率為20MHz的十位元管線式類比數位轉換器,根據佈局後模擬結果,輸入電壓範圍為±0.5V,整體電路工作於371.09375KHz的輸入訊號頻率下可得到SNDR為52dB,功率消耗約為32mW,電路佈局面積為2276×2072um2。
With the fast growth of video process and communication systems, high-resolution analog-to-digital converters (ADCs) are required in the front-end received path. In recent years, the growth of portable consumer electronics, power dissipation is becoming an increasingly important design issue in analog-to-digital converters. In many types of high-speed analog-to-digital converter (ADC) architectures, a pipelined ADC architecture has become an attractive choice. Pipelined ADC has the advantages of high-speed, high-resolution and low power dissipation, and therefore it can achieve good dynamic range performances and fast throughput. This thesis focuses on designing the pipelined ADC. Furthermore, Miller-capacitance effect method is used to the front-end sample-and-hold (S/H) circuit. It has two different capacitance values at the sampling phase and hold phase. Miller-capacitance-based S/H circuit can be employed to relax the requirements for the first pipeline stage.
In this thesis, a 10-bits 20MHz pipelined ADC implemented using the TSMC 0.35um CMOS process with a 1.5V power supply. In the result of post-simulation, this design achives a signal-to-noise and distortion ratio (SNDR) of 52dB at an input signal frequency of 371.09375KHz and an input range of ±0.5V that estimated power dissipation is about 32mW. The layout area is about 2276×2072um2.
中文摘要…………………………………………………………………… i
英文摘要…………………………………………………………………… ii
誌謝………………………………………………………………………… iii
目錄………………………………………………………………………… iv
表目錄……………………………………………………………………… vii
圖目錄……………………………………………………………………… xi
第一章 緒論……………………………………………………………… 1
1.1 研究動機…………………………………………………………… 1
1.2 類比數位轉換器的簡介…………………………………………… 2
1.2.1 奈奎氏類比數位轉換器 (Nyquist rate ADC) ………………… 2
1.2.2 超取樣類比數位轉換器 (Oversampling ADC) ……………… 4
1.3 論文架構…………………………………………………………… 4
第二章 高速類比數位轉換器之基本概念……………………………… 6
2.1 簡介………………………………………………………………… 6
2.2 高速類比數位轉換器的架構介紹………………………………… 6
2.2.1 快閃式類比數位轉換器 (Flash ADC)………………………… 6
2.2.2 二階式類比數位轉換器 (Two-Step ADC) …………………… 8
2.2.3 管線式類比數位轉換器 (Pipelined ADC) …………………… 9
2.2.4 分時平行式類比數位轉換器 (Time-Interleaved ADC) ……… 10
2.3 管線式類比數位轉換器電路動作分析…………………………… 12
2.4 類比數位轉換器的特性參數……………………………………… 15
2.4.1 最小步階電壓 (LSB)…………………………………………… 15
2.4.2 取樣頻率 (Sampling Rate)……………………………………… 15
2.4.3 解析度 (Resolution) …………………………………………… 16
2.4.4 功率消耗 (Power Dissipation) ………………………………… 16
2.4.5 輸入範圍 (Input Range)………………………………………… 16
2.4.6 輸入頻寬 (Input Bandwidth)…………………………………… 16
2.4.7 抵補電壓 (Offset Voltage)……………………………………… 17
2.4.8 增益誤差 (Gain Error) ………………………………………… 17
2.4.9 差值非線性 (Differential Non-Linearity, DNL) ……………… 18
2.4.10 積分非線性 (Integral Non-Linearity, INL)…………………… 18
2.4.11 單調性 (Monotonicity)………………………………………… 19
2.4.12 遺失碼 (Missing Code) ……………………………………… 19
2.4.13 全諧波失真 (Total Harmonic Distortion, THD)……………… 20
2.4.14 訊號對雜訊比 (Signal-to-Noise Ratio, SNR)………………… 20
2.4.15 訊號對雜訊及失真比 (Signal-to-Noise and Distortion Ratio,
SNDR)………………………………………………………… 21
2.4.16 無寄生訊號動態範圍 (Spurious-Free Dynamic Range,
SFDR)………………………………………………………… 21
2.4.17 有效位元數 (Effective Number of Bits, ENOB)……………… 22
2.5 MOS開關於電路設計時考量之因素……………………………… 22
2.5.1 電荷注入效應 (Charge Injection)……………………………… 22
2.5.1.1 仿造元件 (Dummy Device)………………………………… 23
2.5.1.2 互補式MOS開關…………………………………………… 24
2.5.1.3 全差動式MOS電路………………………………………… 25
2.5.2 時脈饋入效應 (Clock Feed-Through) ………………………… 26
2.5.3 低電源電壓設計時MOS開關的導通電阻 …………………… 27
2.5.4 MOS開關導通電阻在低電源電壓設計之改善方法 ………… 29
2.5.4.1 時脈提升 (Clock Booster)………………………………… 29
2.5.4.2 開關運算放大器 (Switched-Opamp)…………………… 30
2.5.4.3 拔靴帶式開關 (Bootstrapped Switch)…………………… 30
2.5.4.4 臨界電壓比例 (VT Scaling) ……………………………… 31
2.6 數位錯誤校正技術(Digital Error Correction Technique) ………… 32
第三章 管線式類比數位轉換器之行為模擬…………………………… 38
3.1 簡介………………………………………………………………… 38
3.2 Matlab/Simulink中使用的基本方塊函數………………………… 38
3.3 管線式類比數位轉換器的行為模型 (Behavior Model of
Pipelined ADC) …………………………………………………… 45
3.3.1 取樣保持電路 (Sample and Hold Circuit) …………………… 45
3.3.2 1.5位元次類比數位轉換器 (1.5-bit Sub_ADC)……………… 46
3.3.3 乘法式數位類比轉換器 (MDAC) …………………………… 47
3.3.4 兩位元快閃式類比數位轉換器 (2-bit Flash_ADC)…………… 48
3.3.5 全加器 (Full Adder) …………………………………………… 50
3.3.6 數位錯誤校正電路……………………………………………… 51
3.3.7 十位元管線式類比數位轉換器 (10-bit Pipelined ADC)……… 53
第四章 管線式類比數位轉換器之設計與分析………………………… 55
4.1 簡介………………………………………………………………… 55
4.2 運算放大器 (Opamp)……………………………………………… 55
4.3 拔靴帶式開關電路 (Bootstrapped Switch Circuit) ……………… 61
4.4 米勒電容式取樣保持電路 (Miller-Capacitance-Based Sample and
Hold Circuit) ……………………………………………………… 64
4.5 1.5位元次類比數位轉換器 (1.5-bit Sub_ADC) ………………… 69
4.5.1 比較器電路 (Comparator Circuit)……………………………… 70
4.5.2 次類比數位轉換器之比較器電路……………………………… 76
4.5.3 解碼器電路 (Decoder) ………………………………………… 78
4.6 乘法式數位類比轉換器 (MDAC)………………………………… 79
4.7 數位錯誤校正電路 ………………………………………………… 86
4.8 暫存器電路 (Register) …………………………………………… 87
4.9 時脈產生器 (Clock Generator) …………………………………… 88
4.10 類比數位轉換器的測試方法 …………………………………… 90
4.11 管線式類比數位轉換器佈局前模擬結果 ……………………… 96
第五章 管線式類比數位轉換器之實體佈局考量……………………… 101
5.1 簡介………………………………………………………………… 101
5.2 基本實體佈局考量與技巧………………………………………… 101
5.3 類比積體電路的佈局……………………………………………… 103
5.4 實體電路佈局……………………………………………………… 105
5.4.1 運算放大器佈局………………………………………………… 105
5.4.2 拔靴帶式開關電路佈局………………………………………… 106
5.4.3 米勒電容式取樣保持電路佈局………………………………… 107
5.4.4 次類比數位轉換器佈局………………………………………… 107
5.4.5 乘法式數位類比轉換器佈局…………………………………… 108
5.4.6 單級類比數位轉換器佈局……………………………………… 108
5.4.7 D型正反器與全加器佈局……………………………………… 109
5.4.8 數位暫存器延遲電路佈局……………………………………… 109
5.4.9 數位錯誤校正電路的佈局……………………………………… 110
5.4.10 數位輸出暫存器電路的佈局 ………………………………… 110
5.4.11 九級管線式類比數位轉換器的佈局 ………………………… 110
5.5 管線式類比數位轉換器佈局後模擬結果………………………… 112
5.6 測試考量…………………………………………………………… 114
5.6.1 輸入終端電路 (Input Termination Circuit) …………………… 115
5.6.2 電源調節電路 (Power Regulator Circuit)……………………… 116
5.6.3 參考電壓產生器………………………………………………… 117
5.6.4 脈波產生器……………………………………………………… 118
第六章 結論及未來研究方向…………………………………………… 119
6.1 結論………………………………………………………………… 119
6.2 未來研究方向……………………………………………………… 120
參考文獻…………………………………………………………………… 121
簡歷………………………………………………………………………… 124
[1] David F. Hoeschele, Jr., Analog-to-Digital anf Digital-to-Analog Converter Techniques, John Wiley and Sons Publishers, 1994.
[2] 高學武, 蘇聰宜, 吳文慶, CMOS ADC 及 D/A 轉換器的設計與測試, 科學園區管理局 國立交通大學 次微米人才培訓中心.
[3] David A. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley and Sons Publishers, 1997.
[4] Behzad Razavi, Principle of Data Conversion System Design, John Wiley and Sons Publishers, 1995.
[5] A. Abo, “Design for Reliability of Low-Voltage, Switch-Capacitor Circuits,” PhD Thesis, University of Calidornia, Berkeley, May 1999.
[6] Mikael Gustavsson, J. Jacob Wikner, Nianxiong Nick Tan, CMOS Data Converters for Communications, Kluwer Academic Publishers, 2000.
[7] 國家晶片系統設計中心CIC訓練課程, Nyquist-Rate A/D Converter Design, July 2003.
[8] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Publishers, 2001.
[9] Lee Tsung-Sum, Li-Dyi Luo, and Chin-Sheng Lin, "Design Techniques of a 3V Fully Differential Flash Analog-to-Digital Converter," Proceedings of the 2002 VLSI Design/CAD Symposium, pp. 2-5. 2002.
[10] M. Waltari and K. Halonen, “Bootstrapped switch without bulk effect in standard CMOS technology”, Electronic Letters, vol. 38, No. 12, pp. 555-557, 2002.
[11] DAI, L., and HARJANI, R., “CMOS switched-op-amp-based sample-and-hold Circuit”, IEEE Journal of Solid-State Circuits, vol. SC-35, pp. 109-113, January, 2000.
[12] L. Sumanen, M. Waltari, and K.A.I. Halonen, “A 10-bit 200-MS/s CMOS Parallel Pipeline A/D Converter”, IEEE Journal of Solid-State Circuits, Vol. 36, No. 7, July 2001.
[13] J. Frenandes, S. R. Lewis, A.M. Mallinson, and G. A. Miller, “A 14-bit 10-μs subranging A/D converter with S/H” , IEEE Journal of Solid-State Circuits, Vol. 23, No. 6, pp. 1309-1315, December 1988.
[14] D. A. Mercer, “A 12-b 750-ns subranging A/D converter with self-correcting S/H”, IEEE Journal of Solid-State Circuits, Vol. 26, No. 12, pp. 1790-1799, December 1991.
[15] 鄭至剛, Design of a 10-bit pipelined Analog-to-Digital Converter for parallel structure, 國立台灣海洋大學電機工程研究所碩士論文, 2002.
[16] 林柏全, The Analysis and Design of a 10-BIT 40MHZ 3-Stage Pipelined ADC Converter, 國立台灣海洋大學電機工程研究所碩士論文, 2001.
[17] 李宜達, 控制系統設計與模擬, 全華出版社, 2004.
[18] J. Goes, J. C. Vital, and J. Franca, “Systematic Design for Optimization of Pipelined ADCs” Kluwer Academic Publishers, 2001.
[19] A. Moscovici, “High Speed A/D Converters understanding Data Converters through Spice,” Kluwer Academic Publishers, 2001.
[20] J. Doernberg, H. S. Lee and D. A. Hodges, “Full-Speed Testing of A/D Converters”, IEEE Journal of Solid-State Circuit, Vol. 19, PP. 820-827, 1984.
[21] S. Karthikeyan, S. Mortezapour, A. Tammineedi, and E.K.F. Lee, “Low-Voltage Circuit Design Based on Biased Inverting Opamp Configuration”, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 47, No. 3, March 2000.
[22] Phillip E. Allen, Douglas R. Holberg, CMOS Analog Circuit Design, Oxford University Press, Inc. 2002.
[23] P. Amaral, J. Goes, Paulino, and A. Steiger-Garcao, “An Improved Low-Voltage Low-Power CMOS Comparator to be used in High-Speed Pipeline ADCs”, Proceedings of the 2002 IEEE International Symposium on Circuits and Systems Vol. 5, pp. V141-V144, 2002.
[24] Andrew M. Abo, and Paul R. Gray, “A 1.5V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter”, IEEE Journal of Solid-State Circuits, Vol. 34, No. 5, May 1999.
[25] H. A. Aslanzadeh, S. Mehrmanesh, M. B. Vahidfar, A. Q. Safarian, “A Low Power 25MS/s 12-Bit Pipelined Analog to Digital Converter for Wireless Application”, Proceedings of the 2003 Southwest Symposium on Mixed-Signal Design pp. 38-42, 2003.
[26] Yong-In Park, S. Karthikeyan, Frank Tsay and Eduardo Bartolome, “A low power 10 bit, 80MS/s CMOS pipelined ADC at 1.8V power supply”, Proceedings of the 2001 IEEE International Symposium on Circuits and Systems Vol. 1, pp. 580-583, 2001.
[27] Dwight U. Thompson, and Bruce A. Wooley, “A 15-b Pipelined CMOS Floating-Point A/D Converter”, IEEE Journal of Solid-State Circuit, Vol. 36, No. 2, February 2001.
[28] Kambiz Kaviani, Omer Oralkan, Pierre Khuri-Yakub, Bruce A. Wooley, “A Multichannel Pipeline Analog-to-Digital Converter for an Integrated 3-D Ultrasound Imaging System”, IEEE Journal of Solid-state Circuits, Vol. 38, No. 7, July 2003.
[29] Atit Tamtrakarn, and Naiyavudhi Wongkomet, “A 2.5-V 10-Bit 40MS/s Double Sampling Pipeline A/D Converter”, Proceedings of the 2002 APCCAS Asia-Pacific Conference on Circuits and Systems Vol. 2, Page.419-424, 2002.
[30] Mikko Waltari, Circuit Tecniques for Low-Voltage abd High-Speed A/D Converters, Helsinki University of Technology, Electronic Circuit Design Laboratory Report 33, Espoo 2002.
[31] Stephen H. Lewis, “Optimizing the stage resolution in Pipelined, Multistage, Analog-to-Digital Converters for Video-Rate Applications”, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 39, No. 8, pp. 516-523, 1992.
[32] Mark Burns and Gordon W. Roberts, An Introduction to Mixed-Signal IC Test and Measurement, Oxford University Press, Inc. 2001.
[33] 黃弘一, 混合訊號式積體電路佈局與分析研討會, April 2003.
[34] 鄭光偉, A 1.0V, 10-Bit CMOS Pipelined Analog-to-Digital Converter, 國立台灣大學電機工程學研究所碩士論文, 2002.
[35] 薛子建, The Design and Implementation of Low-Pass Multibit Delta-Sigma Modulators, 國立台灣大學電機工程學研究所碩士論文, 2001.
[36] National Semiconductor, “LM117/LM317A/LM317 3-Terminal Adjustable Regulator”, Data Sheet, National Semiconductor, Inc., 1997.
[37] 高小文, Low Voltage (1.5V) 8bit-50MS/s Analog-to-Digital Converter on 0.35um 1P4M CMOS Technology, 國立清華大學電子工程研究所碩士班, 2002.
[38] 余紳豪, The Research of Low-Voltage Double-Sampled Pipelined Analog-to-Digital Converter, 國立雲林科技大學電子工程系研究所碩士論文, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top