跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/02 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊儒
研究生(外文):Jyun-Ru Huang
論文名稱:新式生醫快速原型系統開發暨其生物相容支架製作
論文名稱(外文):Development of Novel Bio-Rapid Prototyping System and Fabrication of Cell Seeded Biocompatible Scaffold
指導教授:江卓培江卓培引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:組織工程支架快速原型聚乙二醇聚己內酯PCL-PEG-PCL
外文關鍵詞:Tissue engineeringScaffoldRapid prototyping (RP)Polyethylene glycol (PEG)Polycaprolactone (PCL)PCL-PEG-PCL
相關次數:
  • 被引用被引用:1
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目的為開發一氣壓擠製式快速原型系統,以此系統製作合成的PCL-PEG-PCL共聚物支架,並驗證此支架之生物相容性。研究內容包含氣壓擠製式快速原型系統的開發以及簡單介紹PCL-PEG-PCL共聚物的合成方法。利用此系統製作不同孔洞大小的支架並種植纖維母細胞於支架之中培養,再以使用MTT試驗驗證此支架之生物相容性。實驗發現,氣壓擠製式快速原型系統適合使用熱敏感的共聚物材料製作微孔徑的細胞支架。此外,在氣壓為0.3MPa時,分子量為50,000的PCL-PEG-PCL可以通過加熱噴嘴穩定的熔融沉積,且凝固後不會產生裂縫。支架平均孔徑在339*396 µm適合纖維母細胞附著與增殖。細胞實驗證明合成的共聚物具有無毒性、生物相容性以及可使用於生物醫學的應用。此外,因合成的PCL-PEG-PCL共聚物為非親水性材料,導致纖維母細胞較難於支架表面附著。氣壓擠製式快速原型系統能成功地製作出三微立體組織支架。
The purpose of this study is to develop an air pressure-aided deposition system for fabricating scaffold made of synthesized PCL-PEG-PCL copolymers and to validate the biocompatibility of fabricated scaffolds. The development of air pressure-aided deposition system is presented. The synthesis process of PCL-PEG-PCL copolymer is briefly introduced. Scaffolds with different mean pore sizes are fabricated using developed system and seed the fibroblast cells for culturing and validating its biocompatibility using MTT assay. It is apparent that the air pressure-aided deposition system is suitable for fabricating micro-porous cellular scaffold, especially for thermal-sensitive copolymers. In addition, through experimental results, it shows that molecular weight of 50,000 can be stable deposited the molten form through heating nozzle at air pressure of 0.3 MPa and no crack occurs after it solidify. The scaffold with mean pore size of 339*396 µm is suitable for fibroblast binding and ingrowth. The synthesized copolymers are non-toxicity, biocompatibility and could be used for biomedical application. In addition, the synthesized PCL-PEG-PCL copolymers are hydrophobic biomaterials and result in the fibroblast cells hard to attach on the surface of scaffolds. Consequently, the air pressure-aided deposition system is successfully proposed to construct 3D tissue scaffolds. Synthesized PCL-PEG-PCL copolymers is verified the biocompatibility and successfully fabricated of tissue scaffold with different mean pore sizes.
摘要.............................................i
Abstract........................................ii
誌謝...........................................iii
目錄............................................iv
圖目錄.........................................vii
表目錄.........................................xii
第一章 緒論......................................1
1-1 前言.........................................1
1-2 研究動機與目的...............................2
1-3 論文撰寫架構.................................4
第二章 文獻回顧..................................5
2-1 皮膚.........................................5
2-1-1 皮膚構造與功能.............................5
2-1-2 人工皮膚發展...............................9
2-2 組織工程....................................11
2-3 快速原型....................................14
2-3-1快速原型發展與原理及優點...................14
2-3-2 快速原型運用於支架製作之種類..............17
第三章 實驗方法與材料...........................25
3-1 系統架構與實驗流程..........................25
3-2 實驗材料與合成方法..........................27
3-2-1 天然生醫材料..............................27
3-2-2 合成生醫材料..............................29
3-2-3 合成PCL-PEG-PCL所需用量計算...............34
第四章 支架製作.................................36
4-1 明膠、膠原蛋白、甲殼素混合支架..............36
4-1-1 單層方形支架..............................36
4-1-2 多層方形支架 ..............................42
4-1-3 多層小型支架 ..............................45
4-2 PCL-PEG-PCL支架.............................51
4-2-1 PCL-PEG-PCL支架製作前規畫.................51
4-2-2 PCL-PEG-PCL方形支架.......................52
第五章 支架的細胞培養與檢測.....................66
5-1培養細胞於支架...............................66
5-2 檢測支架上的細胞............................68
5-2-1 MTT assay.................................68
5-2-2 中性紅....................................74
第六章 結論.....................................79
參考文獻........................................81
附錄一 原料與化學藥品...........................86
附錄二 實驗設備.................................88
附錄三 點膠機運動控制指令.......................90
附錄四 點膠機BASIC程式指令......................92
附錄五 路徑程式範例.............................94
Extension Abstract..............................96
1.Curran, M.P., Plosker, G.L. (2002) “Bilayered bioengineered skin substitute (Apligraf): a review of its use in the treatment of venous leg ulcers and diabetic foot ulcers”, BioDrugs, Vol.16, No6, pp. 439-455.
2.Barret, J.P., Dziewalski, P., Ramzy, P.I., Wolf, S.E., Desai, M.H., Herndon, D.N. (2000) “Biobrane versus 196 silver sulfadiazine in second-degree pediatric burns”, Plast. Reconstr. Surg. Vol.105, pp. 62-65.
3.Falanga, V. (1998) “Apligraf treatment of venous ulcers and other chronic wounds. J.Dermatol”, Vol.25, pp. 812-817.
4.Taboas, J.M., Maddox, R.D., Krebsbach, P.H., Hollister, S.J. (2003) “Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds”, Biomaterials, Vol.24, pp. 181-194.
5.Wikipedia , (http://en.wikipedia.org/wiki/Main_Page).
6.Marks, J.G., Miller, J. (2006). Lookingbill and Marks'' Principles of Dermatology, 4th ed., Elsevier Inc. pp. 7.
7.McGrath, J.A., Eady, R.A., Pope, F.M. (2004). Rook''s Textbook of Dermatology, 7th ed., Blackwell Publishing. pp. 3.8.
8.James, W., Berger, T., Elston, D. (2005). Ayndrews'' Diseases of the Skin: Clinical Dermatology, 10th ed., Saunders, pp. 1, 11-12.
9.Marks, J.G., Miller, J. (2006). Lookingbill and Marks'' Principles of Dermatology, 4th ed., Elsevier Inc. pp. 8-9.
10. Green, H., Kehinde, O., Thomas, J. (1979) “Growth of cultured human epidermal cells into multiple epithelia suitable for grafting”, Proceedings of the National Academy of Sciences of the United States of America Vol.76, pp. 5665-5668.
11. Rheinwald, J.G., Green, H. (1975) “Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells”, Cell, Vol.6, pp. 331-343.
12. Pham, C., Greenwood, J., Cleland, H., Woodruff, P., Maddern, G. (2007) “Bioengineered skin substitutes for the management of burns: A systematic review”, Burns, Vol.33, No. 8, pp. 946-957.
13. Hansbrough, J.F., Franco, E.S. (1998) “Skin replacements”, Clinics in Plastic Surgery, Vol.25, pp. 407-423.
14. Yannas, I.V., Burke, J.F. (1980) “Design of an artificial skin. I. Basic design principles”, Journal of Biomedical Materials Research, Vol.14, pp. 65-81.
15. Yannas, I.V., Burke, J.F., Gordon, P.L., Huang, C., Rubenstein, R.H. (1980) “Design of an artificial skin. II. Control of chemical composition”, Journal of Biomedical Materials Research, Vol.14, pp. 107-132.
16. Eaglstein, W.H., Falanga, V. (1997) “Tissue engineering and the development of Apligraf, a human skin equivalent”, Clinical Therapeutics, Vol.19, pp. 894-905.
17. Apligraf, (http://www.apligraf.com/index.html).
18. Armillotta, A., Pelzer, R. (2008) “Modeling of porous structures for rapid prototyping of tissue engineering scaffolds”, Int J Adv Manuf Technol, Vol.39, pp. 501-511.
19. Kochan, D. (1993) “Solid Freeform Manufacturing”, Elsevier science publishers B. V.
20. Wohlers, T. (1998) “Global summit focuses on rapid prototyping in 13 regions of the world”, Rapid Prototyping journal, Vol. 4.
21. Swaelens, B., Kruth, J.P. (1993) “Medical applications in rapid prototyping techniques”, Proceedings of the Fourth International Conference on Rapid Prototyping, 14-17 June, pp.121-134.
22. Kai, C.C., Meng, C.S., Ching, L.S. (1998) “Rapid Prototyping Assisted Surgery Planning”, International journal of Advanced Manufacturing Technology, Vol.14, pp. 624-630.
23. United States Patent, “Method and system for incrementally moving teeth”, Align Technology, Inc., US6, 217, 325B1.
24. Xu, S., Li, D., Lu, B., Tang, Y., Wang, C., Wang, Z. (2007) “Fabrication of a calcium phosphate scaffold with a three dimensional channel network and its application to perfusion culture of stem cells”, Rapid Prototyping Journal, Vol.13, Issue 2, pp. 99-106.
25. Bandyopadhyay, A., Das, K., Marusich, J., Onagoruwa, S.. (2006) “Application of fused deposition in controlled microstructure metal-ceramic composites”, Rapid Prototyping Journal, Vol.12, Issue 3, pp. 121–128.
26. He, J., Li, D., Lu, B., Wang, Z., Zhang, T. (2006) “Custom fabrication of a composite hemi-knee joint based on rapid prototyping”, Rapid Prototyping Journal, Vol.12, pp. 198–205.
27. Hollister, S.J. (2005) “Porous scaffold design for tissue engineering”, Vol.4, pp. 518-524.
28. Jeng, L., Livingston, F. (2005) “Bone Tissue Scaffold in PCL”. IE589U, 27 April.
29. Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinberg, S.E., Hollister, S.J., Das, S. (2005) “Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering”, Biomaterials, Vol 26, pp. 4817-4827.
30. Wang, F., Shor, L., Darling, A., Khalil,S., Sun, W., Lau, A. (2004) “Precision extruding deposition and characterization of cellular poly-ε-caprolactone tissue scaffolds”, Rapid Prototyping Journal, Vol.10, No. 1, pp. 42-49.
31. Leukers, B., Gu¨lkan H., Irsen, S.H., Milz, S., Tille, C., Seitz, H., S’chieker, M. (2005) “Biocompatibility of ceramic scaffolds for bone replacement made by 3D printing”. Mat.-wiss. u. Werkstofftech, Vol.36, No. 12, pp. 781-787.
32. Landers, R., John, H., Mülhaupt, R. (2001) “Scaffolds for tissue engineering applications fabricated by 3D plotting”.
33. LulloDagger, Gloria A. Di, Sweeney, Shawn M., Körkkö, Jarmo, Ala-Kokko, Leena, Antonio, James D. San. (2002) “Mapping the Ligand-binding Sites and Disease-associated Mutations on the Most Abundant Protein in the Human, Type I Collagen”, J. Biol. Chem., 8 February, Vol.277, Issue 6, pp. 4223-4231.
34. BROOKFIELD, DV-II+ Digital Viscometer (http://www.jdinstruments.com/dv2.html)
35. Mosmann, T. (1983) “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays”, J. Immunol, Vol.65, pp. 55-63.
36. Lien, S.M., Li, W.T., Huang, T.J. (2008) “Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method”, Materials Science and Engineering, Vol.28, pp. 36-43.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊