跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 01:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖上瑜
研究生(外文):Liao-Shang Yu
論文名稱:交錯軸雙蝸桿傳動之特性研究
論文名稱(外文):The Characteristics Study of the Transmission of Twin-Worms set in Crossed Axes
指導教授:張信良張信良引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:102
中文關鍵詞:雙蝸桿等高線法傳動效率有限元素分析
外文關鍵詞:Twin-wormsContour methodTransmission efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:362
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雙蝸桿傳動多以交錯軸的方式進行,目前鮮少有相關文獻探討。本文依據蝸桿之幾何外形與切削方式,先利用座標轉換的方法分別建立蝸桿之齒面數學方程式。?探討交錯軸雙蝸桿之間的齒面接觸,依據上述建立之齒面數學模式,利用等高線法來研究雙蝸桿齒面之接觸情形,並探討交錯軸蝸桿搭配時之齒面接觸情形。最後並以有限元素分析研究其接觸應力,其結果亦可用於驗證等高線法之正確與否。本文亦針對交錯軸雙蝸桿傳動之傳動效率進行探討。
The transmission of twin-worms can be set in crossed axes. Now there are few studies in literature. In this thesis, the mathematical models of different types of worm are set up using the coordinate transformation method. The contour method is applied to investigate the contact pattern of the twin-worms in crossed axes. The effects of different design parameters on the contact pattern are then studied. The finite element method is then used to study the contact stress and strain between the two worms. The results can also be used to verify the contact condition predicted by the contour method. The efficiency of the twin-worms drive set in crossed axes is also studied.
摘要......................................i
Abstract......................................ii
致謝......................................iii
目錄......................................iv
表目錄......................................ivi
圖目錄......................................viii
符號說明......................................ix
第一章 緒論......................................1
1.1 簡介......................................1
1.2 蝸桿之種類......................................3
1.3 蝸桿材料之選擇...............................6
1.4 蝸桿傳動之潤滑................................8
1.4.1 潤滑方式的選擇..............8
1.4.2 潤滑油的選擇..............8
1.5 文獻回顧..............9
1.7 論文架構..............11
第二章 蝸桿之齒形數學模式..............12
2.1 簡介..............12
2.2 車刀刀具面方程式..............12
2.3 蝸桿之齒面方程式..............15
2.3.1 ZA型與ZN型蝸桿..............16
2.3.2 ZE(ZI)型蝸桿..............22
第三章 雙蝸桿接觸之傳動效率..............29
3.1 蝸桿尺寸與作用力..............29
3.2 摩擦..............31
3.3 蝸桿自鎖條件與運動方程式..............33
3.4 蝸桿傳動的效率..............38
3.4.1 範例說明..............39
第四章 雙蝸桿接觸之有限元素分析..............43
4.1 有限元素法..............43
4.2 SolidWorks-COSMOSWorks接觸分析步驟..............43
4.3 雙蝸桿交錯軸傳動之有限元素模型建立..............45
4.4 雙蝸桿交錯軸傳動之有限元素分析..............52
4.4.1 壓力角改變..............52
4.4.2 直徑係數改變..............60
第五章 雙蝸桿之齒形接觸分析..............66
5.1 蝸桿之齒形接觸分析 ..............66
5.2 齒面接觸之等高線法 ..............69
5.2.1 等高線法之介紹..............69
5.2.2 齒面接觸之等高線方程式..............69
5.2.3 蝸桿齒面接觸之等高線分析..............77
第六章 結論與未來展望..............93
6.1 結論..............93
6.2 未來展望..............94
參考文獻..............95
Extended Abstract.................98
[1]方宏聲,蝸桿蝸輪組之製造分析,國立交通大學博士論文,台灣新竹市,1996。
[2]齒輪手冊編委會,“齒輪手冊第二版”,機械工業出版社,中國大陸,1990。
[3]Popper, B. and Pessen, D. W., “The Twinworm Drive – A Self Locking Worm-Gear Transmission of High Efficiency, ” Journal of Engineering for Industry, pp. 191-199, 1960.
[4]Bosch, M., “Economical Prosuction of High Precision Gear Worms and other Thread Shaped Profiles by Means of CNC-Conttrolled Worm and Thread Grinding Machines,” Klingelnberg Publication, Germany, 1988.
[5]Oiwa, T., Kobayashi, K. and Toyama, A., “Grinding of Highly Accurate Hourglass Worm Gears-Trial Manufacture of The Worm Grinding Device,” Precision Engineering, Vol. 12, No. 2, pp. 85-90, 1990.
[6]Simon, V., “Stress Analysis in Double Enveloping Worm Gears by Finite Element Method,” Journal of Mechanical Design, Vol. 115, pp. 179-185, 1994.
[7]Litvin, F. L., “Gear Geometry and Applied Theory”, Prentice-Hall, New Jersey, 1994.
[8]Winter, H. and Wilkesmann, H., “Calculation of Cylindrical Worm Gear Drives of Different Tooth Profiles,” Journal of Mechanical Design, Vol. 103, pp. 73-82, 1981.
[9]Zheng, C., Lei, J., and Savage, M., “A General Method for Computing Worm Gear Conjugate Mesh Property: Part 1 - The Generating Surface,” Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 111, pp. 143-147, 1989.
[10]Zheng, C., Lei, J., and Savage, M., “A General Method for Computing Worm Gear Conjugate Mesh Property: Part 2 – The Mathematical Model of Worm Gear Manufacturing and Working Process,” Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 111, pp. 148-152, 1989.
[11]Janninck, W. L., “Contact Surface Topology of Worm Gear Teeth,” Gear Technology, pp. 31-47, 1988.
[12]Wilcox, L. And Coleman, W., “Application of Finite Element to the Analysis of Gear Tooth Stress,” Transaction of the ASME, Journal of Engineering For Industry, Vol. 95, No. 4, pp. 1139-1149, 1973.
[13]Tsay, C. B., “Helical Gears With Involute Shaped: Geometry Computer Simulation, Tooth Contact Analysis, and Stress Analysis,” Transaction of The ASME, Journal of Mechanical Design, Vol. 110, pp. 482-491, 1988.
[14]Arikan, M. A. S. and Tarmar, M., “Tooth Contact and 3-D Stress Analsis of Involute Helical Gears, ” ASME, International Power Transmission and Gearing Conference, Vol. 2, pp. 461-468, 1992.
[15]Chen, Y. C. and Tsay, C. B., “Stress Analysis of A Helical Gear Set with Localized Bearing Contact,” Finite Elements in Analysis And Design, Vol. 38, pp. 707-723, 2002.
[16]Sfakiotakis, V. G. and Anifantis, N. K., “Finite Element Modeling of Spur Gearing Fractures, ” Finite Elements in Analysis and Design, Vol. 39, pp. 79-92, 2002.
[17]Fong, Z. H., Huang, F. C., Fang, H. S., “Evaluating the Inter-lobe Clearance of Twin-screw Compressor by the Iso-clearance Contour Diagram, ”Mechanism and Machine Theory, Vol.36, pp.725-742, 2001.
[18]Maruyama, T., Takara, A. and Yoshikazu, A., ”Fluid Rotating Apparatus with Plural Drive Motor Synchronization System,” Patent No. US5302089, 1994.
[19]Chen, C. C., Shen, T. M., Chien, J. C. and Liu, M. H., ”Combination Double Screw Rotor Assembly, ” Patent No. US 6508639 B2, 2003.
[20]Kashiyama, “Gas Exhaust System and Pump Cleaning System for A Semiconductor Manufacturing Apparatus.” Patent No.5443644, 1994.
[21]薛全萌,雙蝸桿接觸之特性研究,國立虎尾科技大學碩士論文,台灣雲林縣,2007。
[22]實威科技股份有限公司編著,COSMOSWorks 電腦輔助工程分析,全華圖書股份有限公司,台灣台北市,2007。
[23]Oledzki, A.A., “Hight Efficiency Self-Locking Gears,” Eighth World Congress on the Theory of Machines and Mechanisms, Prague, Czechoslovakia, AUGUST 26-31, 1991.
[24]李鈞澤,齒輪設計,高立圖書有限公司,台灣台北市,2006。
[25]張起豪,Mathemaitca入門與實例應用,�眳p資訊股份有限公司,台灣台北市,1992。
[26]洪維恩,Mathemaitca 5 數學運算大師,旗標出版股份有限公司,台灣台北市,2006。
[27]傅光華譯,靜力學,東華書局,台灣台北市,1984。
[28]Litvin, F. L., “Theory of Gearing,” NASA Reference Publication 1212, Washington Dc, 1989.
[29]林宗正,ZK型雙導程蝸桿蝸輪組摩擦係數之研究,國立清華大學,台灣新竹市,2003。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top