跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 21:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:丁章議
研究生(外文):Chang-Yi Ding
論文名稱:奈米流體於微流道散熱器之熱流場與冷卻性能分析
論文名稱(外文):Thermal Flow Field and Cooling Performance of Nanofluids in Microchannel Heat Sinks
指導教授:陳建信
指導教授(外文):Chien-Hsin Chen
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:51
中文關鍵詞:微流道散熱器奈米流體強制對流電子冷卻
外文關鍵詞:Microchannel heat sinksNanofluidsForced convectionElectronic cooling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:686
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在研究使用奈米流體作為工作流體在微流道散熱器中之強制對流熱傳,並探討奈米流體於微流道內之熱流特性與熱傳增益等。本研究採用完整的非達西流場模式來描述流體之流動情況,並以有限差分法求解動量方程式與能量方程式,並就此問題的重要參數對微流道散熱器熱流特性的影響作有系統的討論。
本文將採用與現存文獻相同之微流道幾何尺寸及其相關條件,進行數值分析,並將分析完成之重要參數與其實驗結果比較,結果相當吻合。除此之外,本文也將考慮其他常見之奈米流體的種類,引入本文的數值分析中,加以比較各種奈米流體之冷卻性能,使本論文能更加完整。
本研究成果期望讓吾等對奈米流體之熱流行為有更深入的認識,並希望有助於新一代電子冷卻技術之發展。
The objective of this work is to investigate thoroughly the forced convection heat transfer of nanofluid flow through microchannel heat sinks. In view of the small dimensions of the microstructures, the microchannel heat sink is modeled as a fluid-saturated porous medium by using a general non-Darcy model to describe the flow and the two-equation model is used for heat transfer. A numerical study is carried out to solve the flow field and thermal transport problems. Results for the velocity profiles of the coolant flow and the temperature distributions for both the solid and fluid phases are presented to reveal the flow and heat transfer characteristics of nanofluids flowing in microchannel heat sinks. Also, cooling performance of the microchannel heat sink in terms of the thermal resistance is illustrated for different values of the nano-particle volume fraction.
Results for the thermal resistance of water-alumina nanofluid are compared to existing experimental data in the literature. It is found that the results of these two sets match very well. Also, cooling performances of various nanofluids are considered in the present study. The present investigation is expected to be useful for the development of the next-generation electronic cooling techniques.
目錄
中文摘要........................................................................................................... …i
Abstract…………………………………………………………..….. ……….…ii
誌謝..................................................................................................... …………iii
目錄…………………………………………………………..……... …………iv
表目錄…………………………………………………………..…... …………vi
圖目錄…………………………………………………………..…... ……...…vii
符號說明............................................................................................................viii
第一章 緒論.........................................................................................................1
1-1 前言.................................................................................................1
1-2 文獻回顧.........................................................................................3
1-2-1純流體應用於微流道散熱器之文獻研究...........................3
1-2-2奈米流體之文獻研究………………………………...........6
1-2-3奈米流體應用於微流道散熱器之文獻研究.......................6
1-3 研究目的.......................................................................................10
1-4 本文架構.......................................................................................10
第二章 數學模式...............................................................................................12
2-1 數學模式基本假設.......................................................................12
2-2 奈米流體的物理性質...................................................................12
2-3 以動量方程式解熱流場速度分佈...............................................14
2-3-1 數學形式之動量方程式....................................................14
2-3-2 動量方程式之有限差分式................................................17
2-4 以能量方程式解熱流場溫度分佈與熱阻……………...............19
2-4-1 數學形式之能量方程式....................................................19
2-4-2 能量方程式之有限差分式................................................23
2-4-3 熱阻模式定義....................................................................25
第三章 結果與討論...........................................................................................26
3-1 實驗參數內容之依據與使用.......................................................26
3-2 在完全發展流與穩態流動之情況下微流道之速度分佈...........26
3-3 在完全發展流與穩態流動之情況下微流道之溫度分佈...........27
3-4 在完全發展流與穩態流動之情況下微流道之熱阻...................28
第四章 結論.......................................................................................................30
第五章 未來展望...............................................................................................31
參考文獻.............................................................................................................43
英文論文大綱.....................................................................................................47
作者簡歷.............................................................................................................51
參考文獻
[1]D.B. Tuckerman and R.F.W. Pease, “High-performance heat sinking for VLSI,” IEEE Electronic Device Letters, Vol. EDL 2, pp. 126-129, (1981).
[2]R.J. Phillips, “Master’s thesis,” Massachusetts Institute of Technology, (1987).
[3]C.S. Landram, “Computational model for optimising longitudinal fin heat transfer in laminar flows,” Heat Transfer in Electronic Equipment, ASME, Vol. 171, (1991).
[4]R.W. Knight and D.J. Hall and J.S. Goodling and R.C. Jaeger, “Heat sink
optimization with application to microchannels,” IEEE Transactions on
Components Hybrids and Manufacturing Technology, Vol. 15, pp. 832-842,
(1992).
[5]S.J. Kim and D. Kim, “Forced convection in microstructures for electronic equipment cooling,” ASME Journal of Heat Transfer, Vol. 121, pp. 639-645, (1999).
[6]C.Y. Zhao and T.J. Lu, “Analysis of microchannel heat sink for electronics cooling,” Int. J. Heat Mass Transfer, Vol. 45, pp. 4857-4869,(2002).
[7]W. Qu and I. Mudawar, “Experimenta1 and numerical study of pressure drop and heat transfer in a single-phase microchannel heat sink,” Int. J. Heat Mass Transfer, Vol. 45, pp. 2549-2565, (2002).
[8]P.S. Lee and J.C. Ho, “Experimental study on laminar heat transfer in microchannel heat sink,” IEEE Inter Society Conference in Thermal Phenomena, pp. 379-386, (2002).
[9]H.Y. Wu and P. Cheng, “An experimenta1 study of convection heat transfer in silicon microchannels with different surface conditions,” Int. J. Heat and Mass Transfer, Vol. 46, pp. 2547-2556, (2003).
[10]I. Tiselj and G. Hetsroni and B. Mavko and A. Mosyak and E. Pogrebnyak and Z. Segal, “Effect of axial conduction on the heat transfer in micro- channe1s,” Heat and Mass Transfer, Vol. 47, pp. 2551-2565, (2004).
[11]W. Owhaib and B. Palm, “Experimental investigation of single-phase
convective heat transfer in circular microchannels,” Experimental Thermal and Fluid Science, Vol.28, pp. 105-110, (2004).
[12]C.H. Chen, “Force convection heat transfer in microchannel heat sinks,” Int. J. Heat and Mass Transfer, Vol. 50, pp. 2182-2189, (2007).
[13]林銘宏, “微流道中溫度效應對不可壓縮流體流力與熱傳特性之影響,”
淡江大學航空太空工工程學系碩士論文, (2005).
[14]陳建華, “入出口設計對微流道熱沉性能影響之數值探討,” 中興大學機械研究所碩士論文, (2006).
[15]蕭心端, “流道設計對微流道熱沉性能提升之實驗研究,” 中興大學機械研究所碩士論文, (2006).
[16]J.C. Maxwell, “A treatise on electricity and magnetism”, second ed.,Clarendon Press,” Oxford, UK, (1881).
[17]R.L. Hamilton and O.K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” I and CE Fundamentals 1, pp.187-191, (1962).
[18]H.C. Brinkman, “The viscosity of concentrated suspension and solutions,” Journal of Chemistry Physics 20, pp.571-581, (1952).
[19]Y. Ding and D. Wen, “Particle migration in a flow of nanoparticle suspension,” Powder Technology 149, pp.84-92, (2005).
[20]K.V. Liu and S.U.S. Choi, “Measurements of ressure drop and heat trsndfer in turbulent pipe flows of particulate slurries,” Argonne National Laboratory Report, vol. 88, no. 15, (1988).
[21]S.U.S. Choi, J. A. Eastman and S. Li and W. Yu and L.J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based containing copper nanoparticles,” Applied physics letters, Vol. 78, pp.718-720, (2001).
[22]S.U.S. Choi and D.A. Siginer and H.P. Wang, “Enhancing thermal conductivity of fluids with nanoparticles,” Developments and Applications of Non-Newtonian Flows, ASME, FED 231/MD 66, pp 99-105, (1995).
[23]楊世宇, “銀奈米流體應用於熱管效益之研究,” 淡江大學機械與機電工程系碩士論文, (2005).
[24]洪忠仁, “氧化銅奈米流體熱性質分析與應用研究,” 台北科技大學冷凍空調工程系碩士論文, (2005).
[25]劉敏生, 林景正, 黃一德, 王啟川, “奈米流體之氧化銅和奈米碳管的熱傳導率量測,” 技術應用期刊十月號, 冷凍與空調, (2005).
[26]J. Koo and C. Kleinstreuer, “Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids,” International Communications in Heat and Mass Transfer 32, pp.1111-1118, (2005).
[27]鄧國良, “使用分子動力學模擬分析奈米流體之熱傳導係數,” 國立清華大學, 工程與系統科學系碩士論文, (2007).
[28]E. Abu-Nada, “Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step,” Int. J. Heat Mass Transfer, (2007).
[29]X.Q. Wang and A.S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” Int. J. Thermal Sciences, Vol. 46, pp. 1-19, (2007).
[30]R. Chein and G. Huang, “Ana1ysis of microchannel heat sink performance using nanofluids,” Applied Thermal Engineering 25, pp. 3104-3114, (2005).
[31]J. Koo and C. Kleinstreuer, “Laminar nanofluid flow in microheat-sinks,” Int. J. Heat and Mass Transfer, Vol. 48, pp. 2652-2661, (2005).
[32]S.P. Jang and S.U.S. Choi, “Coo1ing performance of a microchannel heat sink with nanofluids,” Applied Thermal Engineering, Vol. 26, pp. 2457-2463, (2006).
[33]H. Abbassi and C. Aghanajafi, “Evaluation of heat transfer augmentation in a nanofluid-cooled microchannel heat sink,” Journal of Fusion Energy, Vol.25, No. 3, (2006).
[34]T.H. Tsai and R. Chein, “Performance analysis of nanofluid-cooled microchannel heat sinks,” Int. J. Heat Fluid Flow, Article in press, (2007).
[35]R.Chein and J. Chuang, “Experimental microchannel heat sink performance studies using nanofluids,” Int. J. Thermal Sciences 46, pp. 57-66, (2007).
[36]A.R.A. Khaled and K.Vafai, “Heat transfer enhancement through control of thermal dispersion effects,” Int. J. Heat and Mass Transfer 48, pp.2172-2185, (2005).
[37]J. Li and C. Kleinstreuer, “Thermal performance of nanofluid flow in microchannels,” Int. J. Heat and Fluid Flow, Vol. 29, pp. 1221-1232, (2008).
[38]魏連晉, “微流道熱沉孔內奈米流體之強制對流熱傳實驗研究,” 成功大學碩士論文, (2007).
[39]A. Bejan, “Convection Heat Transfer,” third ed., John Wiley and Sons, U.S.A, (2004).

[40]T. Cebeci and P. Bradshaw, “Physical and Computational Aspects of Convective Heat Transfer,” Springer, New York, (1984).
[41]A. Bejan and D.A. Nield, “Convection in Porous Media,” third ed., Springer, U.S.A, (2006).
[42]M.Necati Ozisik, “Finite Difference Methods in Heat Transfer,” Inc. CRC Press, U.S.A, (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top