跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡弘揚
研究生(外文):Hung-Yang Tsai
論文名稱:鈦鉭摻雜氮氧化鉿鑭在前瞻金氧半電容特性研究
論文名稱(外文):Study of TixTay-Doped HfLaON on Electrical and Reliability Characteristics of Advanced Metal-Oxide-Semiconductor Capacitors
指導教授:鄭錦隆
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:87
中文關鍵詞:高介電係數材料氮氧化鉿鑭氮氧化鈦鉭鉿鑭濺鍍機
外文關鍵詞:High-k materialsHfLaOxNyHfLaTiTaONsputter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論利用濺鍍機控制氮氣流量探討不同N2比例對具HfLaON高介電係數閘介電層金氧半電容元件特性影響,利用不同比例Ta及Ti的摻雜量搭配不同後沉積熱處理來探討對具HfLaTaTiON閘介電層MOS元件的電性及可靠度影響,並藉由變溫量測來確認其漏電流機制,其後利用共同濺鍍Ta及HfLaO製作不同Ta含量之HfTaLaON閘介電層並探討對MOS元件電性及可靠度影響。
經由實驗結果發現,HfLaON比HfLaO有較好的特性,並在摻雜Ti後,可得到較低的等效氧化層厚度,但其漏電流及可靠度在高溫時較差,反之在只有摻入Ta時,雖然其等效氧化層厚度較高,但具有熱穩定性的優點。而當HfLaON摻雜適當比例的TaxTiy即可獲得較佳的特性,其中以Ta/Ti為10/5的比例可得最佳的等效氧化層厚度為0.58 nm及介面陷阱密度為7.85 x 10^10 cm-2eV-1,其介電常數約為55,利用共同濺鍍Ta及HfLaO形成之HfTaLaON閘介電層MOS元件則是當共同濺鍍Ta金屬為15秒時,經過700℃快速熱處理,可得到最佳的等效氧化層厚度為0.77nm,及介面陷阱密度為1.29 x 10^11 cm-2eV-1。
In this thesis, the effects of the nitrogen concentration profiles in the HfLaON gate dielectric on the electrical and reliability properties of metal-oxide-semiconductor (MOS) capacitors were investigated. The nitrogen concentration in HfLaON gate dielectric was adjusted by sputtering the HfLaO target in a nitrogen-flow-modulated ambient. The Ti and Ta-doped HfLaON as the dielectric of advanced MOS capacitors were also investigated. The post-deposition annealing also was adopted to demonstrate the characteristics of MOS capacitors. The leakage current mechanisms of various dielectrics were demonstrated under various temperatures measurement.
The results suggest that the properties of the HfLaON dielectric were better than that HfLaO dielectric ones. The MOS capacitor with lower equivalent oxide thickness (EOT) can be achieved by Ti-doped HfLaON dielectric. The performances of the MOS capacitors can be improved using HfLaTiTaON as gate dielectric with suitable amount of Ti and Ta. The HfLaTaTiON gated-MOS capacitor with a EOT of 0.58 nm, a dielectric constant of 55, and a interface trap density (Dit) of 7.85 x 10^10 cm-2eV-1, were obtained Finally, a EOT of 0.77nm and a Dit of 1.29 x 10^11 cm-2eV-1 of the HfLaTaON gated-MOS capacitors can be achieved by Ta-doped of 15 s and RTA of 700 C.
摘要………………………………………………………………… I
Abstract……………………………………………………………II
誌謝…………………………………………………………………III
目錄 ………………………………………………………………IV
表目錄………………………………………………………………VII
圖目錄 VIII
第一章 序論
1.1高介電係數閘極介電層(High-k dielectric)發展概述………1
1.2研究動機 …………………………………………………………5
1.3論文架構 …………………………………………………………5
第二章 元件製程與量測儀器
2.1各種HfOxNy、Hf2La2O7、Hf2La2O7Nx及氮氣調變Hf2LaxOyNz之閘極介電層金氧半電容元件製造流程……………………………………7
2.1.1晶圓處理…………………………………………………………8
2.1.2閘極介電層沉積及退火處理……………………………………8
2.1.3金屬電極沉積……………………………………………………9
2.2摻雜不同比例Ta及Ti之Hf2La2O7Nx閘極介電層金氧半電容元件製造流程
2.2.1晶圓處理…………………………………………………………10
2.2.2閘極介電層沉積及退火處理……………………………………11
2.2.3金屬電極沉積……………………………………………………12
2.3共同濺鍍及不同退火熱處理溫度探討不同比例Ta之HfTaxLaON閘極介電層金氧半電容元件製造流程…………………………………12
2.3.1 晶圓處理………………………………………………………12
2.3.2閘極介電層沉積與退火處理 …………………………………12
2.3.3 金屬電極沉積…………………………………………………13
2.4 電性特性及可靠度特性量測……………………………………14
2.4.1電容-電壓特性包含遲滯量測…………………………………14
2.4.2電流-電壓特性量測……………………………………………15
2.4.3介面陷阱電荷密度(Dit)特性量測……………………………15
2.4.4漏電流機制………………………………………………………15
2.4.5應力引起之漏電流(SILC)可靠度特性量測……………………16
2.4.6應力引起之平帶電壓偏移(SIFC)可靠度特性量測……………16
2.5材料物理特性量測 ………………………………………………17
2.5.1 能量散佈光譜儀(EDS) ………………………………………17
2.5.2 X-Ray繞射儀(XRD) ……………………………………………17
2.5.3歐傑電子顯微鏡(AES) …………………………………………18
2.5.4化學分析電子儀(ESCA) ………………………………………18
2.5.5高解析穿透式電子顯微鏡(HRTEM) ……………………………19
第三章 不同退火溫度下的HfOxNy、Hf2La2O7、Hf2La2O7Nx、Hf2LaxO7Nx之N調變的閘極介電層金氧半電容特性研究
3.1 研究動機…………………………………………………………26
3.2 實驗結果與討論…………………………………………………27
3.3結論…………………………………………………………………30
第四章不同退火溫度處理對摻雜不同比例Ta及Ti之Hf2La2O7Nx閘極介電層金氧半電容特性研究
4.1 研究動機…………………………………………………………44
4.2實驗結果與討論……………………………………………………45
4.3結論…………………………………………………………………48
第五章利用共同濺鍍及不同退火溫度探討不同比例Ta之HfLaTaxON閘極介電層金氧半電容特性研究
5.1 研究動機…………………………………………………………63
5.2實驗結果與討論……………………………………………………64
5.3結論…………………………………………………………………66
第六章結論與建議
6-1結論…………………………………………………………………78
6-2建議…………………………………………………………………80
參考文獻………………………………………………………………81
作者簡歷………………………………………………………………83
英文論文………………………………………………………………84
[1]Kyoung H. Kim, Roy G. Gordon, Andrew Ritenour and Dimitri A. Antoniadis. APPLIED PHYSICS LETTERS 90, 212104 (2007)
[2]Apurba Laha, E. Bugiel, and H. J. Osten, A. FisselAPPLIED PHYSICS LETTERS 88, 172107 (2006)
[3]P. Darmawan, P. S. Lee, Y. Setiawan, and J. Ma, T. Osipowicz, APPLIED PHYSICS LETTERS 91, 092903 (2007)
[4]N. Lu, H.-J. Li and J. J. Peterson, D. L. Kwong, APPLIED PHYSICS LETTERS 90, 082911 (2007)
[5]S. Chen, Y. Y. Zhu, R. Xu, Y. Q. Wu, X. J. Yang, Y. L. Fan, F. Lu, and Z. M. Jiang, J. Zou, APPLIED PHYSICS LETTERS 88, 222902 (2006)
[6]Hiroaki Arimura,_ Naomu Kitano, Yuichi Naitou, Yudai Oku,Takashi Minami,Motomu Kosuda,Takuji Hosoi,Takayoshi Shimura and Heiji Watanabe, APPLIED PHYSICS LETTERS 92, 212902 (2008)
[7]P. Tsipas, S. N. Volkos, A. Sotiropoulos, S. F. Galata, G. Mavrou, D. Tsoutsou,Y. Panayiotatos,A. Dimoulas, C. Marchiori, and J. Fompeyrine, APPLIED PHYSICS LETTERS 93, 082904 (2008)
[8]G. Mavrou, P. Tsipas, A. Sotiropoulos, S. Galata, Y. Panayiotatos,1A. Dimoulas,C. Marchiori, and J. Fompeyrine, APPLIED PHYSICS LETTERS 93, 212904 (2008)
[9]Hyoung-Sub Kim, Injo Ok, Manhong Zhang, Tackhwi Lee, Feng Zhu,Lu Yu, and Jack C. Lee, APPLIED PHYSICS LETTERS 89, 222903 (2006)
[10]InJo Ok, H. Kim, M. Zhang, F. Zhu, S. Park,J. Yum, H. Zhao,and Jack C. Lee, APPLIED PHYSICS LETTERS 91, 132104 (2007)
[11]Chin-Lung Cheng, Chien-Wei Liu, Jin-Tsong Jeng, APPLIED PHYSICS LETTERS 90, 062114 (2007)
[12]Chin-Lung Cheng, Kuei-Shu Chang-Liao, Tzu-Chen Wang, Tien-Ko Wang, and Howard Chih-Hao Wang, IEEE ELECTRON DEVICE LETTERS, VOL. 27, NO. 3, MARCH 2006
[13]C. H. Wu, B. F. Hung, Albert Chin, Senior Member, IEEE, S. J. Wang, X. P.Wang,M.-F. Li, Senior Member, IEEE,C. Zhu, Member, IEEE, F. Y. Yen, Y. T. Hou, Y. Jin, H. J. Tao, S. C. Chen, and M. S. Liang, Fellow, IEEE, IEEE ELECTRON DEVICE LETTERS, VOL. 28, NO. 4, APRIL 2007
[14]X. P. Wang, Ming-Fu Li, Senior Member, IEEE, C. Ren, Student Member, IEEE, X. F. Yu, C. Shen, H. H. Ma, Albert Chin, Senior Member, IEEE, C. X. Zhu, Member, IEEE, Jiang Ning, M. B. Yu, and Dim-Lee Kwong, Senior Member, IEEE, IEEE ELECTRON DEVICE LETTERS, VOL. 27, NO. 1, JANUARY 2006
[15]Yasuhiro Oshima, Michael Shandalov, Yun Sun, Piero Pianetta, and Paul C. McIntyre, APPLIED PHYSICS LETTERS 94, 183102 (2009)
[16]G. K. Dalapati, A. Sridhara, A. S. W. Wong, C. K. Chia, and D. Z. Chi APPLIED PHYSICS LETTERS 94, 073502 (2009)
[17]Yi Zhao, Koji Kita, Kentaro Kyuno, and Akira Toriumi, APPLIED PHYSICS LETTERS 94, 042901 (2009)
[18]InJo Ok, H. Kim, M. Zhang, F. Zhu, S. Park, J. Yum, H. Zhao, Domingo Garcia,Prashant Majhi, N. Goel, W. Tsai, C. K. Gaspe, M. B. Santos, andJack C. Lee, APPLIED PHYSICS LETTERS 92, 112904 (2008)
[19]C. Rossel,a_ B. Mereu, C. Marchiori, D. Caimi, M. Sousa, A. Guiller, H. Siegwart,R. Germann, J.-P. Locquet, J. Fompeyrine, and D. J. Webb, Ch. Dieker and Jin Won Seo, APPLIED PHYSICS LETTERS 89, 053506 (2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top