跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 17:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李韋廷
研究生(外文):Wei-Ting Lee
論文名稱:酒精催化化學氣相沉積奈米碳管網於前瞻金氧半元件內連線應用研究
論文名稱(外文):Study of Carbon Nanotube Network (CNTN) Synthesized by Alcohol Catalytic Chemical-Vapor-Deposition as Interconnect of Advanced Metal-Oxide-Semiconductor Devices
指導教授:鄭錦隆
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:110
中文關鍵詞:奈米碳管網內連線接觸電阻可靠度金氧半元件
外文關鍵詞:carbon nanotube network (CNTN)interconnectcontact resistancereliabilitymetal-oxide-semiconductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文藉由酒精催化化學氣相沉積成長奈米碳管網,並使用鈷/鉬雙金屬當催化劑塗佈於SiO2/Si(100)堆疊基板,並以酒精作為碳源,搭配各種成長時間、溫度及不同表面處理製造奈米碳管網當前瞻金氧半元件內連線應用。為了降低奈米碳管網連線之阻抗,使用酸洗處理奈米碳管網,結果顯示奈米碳管網經H2SO4/H2O2=3:1混合溶液於90oC下酸洗奈米碳管網30秒,奈米碳管網石墨化程度由0.91降至0.82,元件阻抗(連線長100um寬50um)由90.3k降至24.1k ohm,經計算奈米碳管網片電阻由32k降至6.8k ohm/square,奈米碳管網與鋁電極之接觸電阻由16k降至5.5k ohm,特徵傳輸長度由25μm至40μm,研究發現使用H2SO4/H2O2混合溶液酸洗不會使奈米碳管網與SiO2/Si(100)堆疊基板分離,奈米碳管網經酸洗使其產生團聚,並使奈米碳管網片電阻、奈米碳管網與鋁金屬接觸電阻降低。
In this thesis, the synthesizing high-quality carbon nanotube network (CNTN) has been developed directly by means of the low-temperature catalytic CVD method using ethanol (ACCVD). A metal acetate solution was prepared by dissolving molybdenum acetate and cobalt acetate into ethanol. By modulated the various growth temperatures and time, as well as various pre-treatments, the high-quality CNTN can be achieved for interconnect of the metal-oxide-semiconductor (MOS) device applications. To reduce the resistance of the CNTN, the CNTN was treated by the H2SO4:H2O2=3:1 mixed solution at 90 oC for 30 s. The results show that the graphite property of the CNTN was reduced from 0.91 to 0.82 and total resistance of the CNTN with length of 100 μm and width of 50 μm, was reduced from 90.3 to 24.1 kΩ. The sheet resistance and the contact resistance of the CNTN were reduced from 32 to 6.8 kΩ/square, and 16 to 5.5 kΩ. The characteristics transfer length were increment from 25μm to 50μm. After acid treatment, the adhesion between the CNTN and the SiO2/Si stacked substrate can be increased, and the CNTN would get to reunion.
摘要……………………………………………………………………………… i
Absteact………………………………………………………………………….i i
誌謝…………………………………………………………………………….. iii
目錄…………………………………………………………………………….. iv
表目錄………………………………………………………………………….vii
圖目錄. ………………………………………………………………………..viii
第一章 續論……………………………………………………………………. 1
1.1內連線(interconnect)發展概述…………………………...…………… 1
1.2奈米碳管應用於內連線發展概述……………………………………. 2
1.3奈米碳管與金屬電極接觸電阻之相關研究…………......................... 5
1.4奈米碳管應用於內連線降低內連線阻抗之相關研究…………..…...6
1.5 研究動機………………………………………………………………8
1.5 論文架構……………………………………………………………… 8
第二章 元件製程與測………………………………………………………...10
2.1奈米碳管網前處理與奈米碳管網內連線製造流程…………….......10
2.1.1 晶圓清洗………………………………………………………..10
2.1.2 熱氧化成長二氧化矽層……………………………………......11
2.1.3 二氧化矽層改質處理…………………………………………..12
2.1.4 雙金屬催化劑之製備與Dip-Coating製程……………………..13
2.1.5 催化劑鍛燒還原與奈米碳管成長製程………………………..13
2.1.6 奈米碳管網前處理製程………………………………………..14
2.1.7 奈米碳管網圖案化製程………………………………………..15
2.1.8 金屬電極圖案化與掀離法(Lift-off)製程……………………...15
2.2酸洗處理低溫成長奈米碳管內連線製造流程………………………17
2.2.1 晶圓清洗………………………………………………...……...17
2.2.2 熱氧化成長二氧化矽層…………….…………………..……...18
2.2.3 二氧化矽層改質處理…………………………………………..19
2.2.4 雙金屬催化劑之製備與Dip-Coating製程……………………..20
2.2.5 催化劑鍛燒還原與奈米碳管成長製程………………………..20
2.2.6 奈米碳管網酸洗前處理製程…………………………………..21
2.2.7 奈米碳管網圖案化製程………………………………………..21
2.2.8 金屬電極圖案化與掀離法(Lift-off)製程……………………...22
2.3 電特特性量測………………………………………………..………23
2.3.1傳輸線模型量測法(TLM)……………………………………....23
2.3.2活化能量測……………………………………………………...25
2.4 材料物性量測………………………………………………………..26
2.4.1接觸角量測儀(Contact angle measure system)…………………27
2.4.2場發掃描式電子顯微鏡 ……………………………………..…27
2.4.3能量散佈光譜儀(EDS)…………………………………………..28
2.4.4拉曼光譜分析儀 (Raman Spectrometer)……………………….28
2.4.5穿透式電子顯微鏡(TEM)……………………………………….29
2.4.6紫外光/可見光/近紅外光分光光譜儀(UV-VIS-NIR Spectrophotometer)……………………………………………….29
第三章 不同前處理之奈米碳管網及其維度效應在MOS元件內連線特性研究……………………………………………..……………………….41
3.1 物性量測與分析研究………………………………………………..41
3.1.1 二氧化矽層表面改質對催化劑分佈之影響…………………..41
3.1.2 酒精催化化學氣相沉積奈米碳管網特性分析………………..42
3.1.3經氧電漿前處理奈米碳管網特性分析………………………...44
3.1.4經酸洗前處理奈米碳管網特性分析……………………………46
3.1.5 奈米碳管網內連線元件製程物性分析.……………………….47
3.2 電特性量測與分析研究……………………………………………..48
3.2.1 奈米碳管網內連線電特性分析研究…………………………..48
3.2.2 奈米碳管網氧電漿前處理內連線電特性分析研究…………..51
3.2.3 經酸洗前處理奈米碳管網內連線電特性分析研究…………..51
3.3結論……………………………………………………………………53
第四章 具不同溫度及時間成長之奈米碳管網在內連線特性之研究……...79
4.1 物性量測與分析研究………………………………………………..79
4.1.1 酒精催化化學氣相沉積不同溫度及時間成長奈米碳管網特性分析……………………………………………………………..79
4.1.2 650oC成長奈米碳管網酸洗前處理後特性分析……………….81
4.2 電特性量測與分析研究……………………………………………..82
4.2.1 650oC成長奈米碳管網內連線電特性分析研究……………….82
4.2.2 650oC成長奈米碳管網酸洗處理後內連線電特性分析研究….84
4.3 結論…………………………………………………………………..85
第五章 結論與建議………………………………………………………….101
5.1結論…………………………………………………………………..101
5.2 建議…………………………………………………………...…….102
參考文獻……………………………………………………………………... 103
英文大綱……………………………………………………………………...106
作者簡歷……………………………………………………………………...110
[1] J. J. Plombon, Ebrahim Andideh, Valery M. Dubin, and Jose Maiz. Applied Physics Letters 89, 113124 (2006).
[2]International Technology Roadmap for Semiconductors (http://www.itrs.net/reports.html).
[3] S.Iijima. Nature (London) 354, 56 (1991).
[4] F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhogl, M. Liebau, E. Unger,
W. Honlein. Microelectronic Engineering 64, 399-408 (2002).
[5] B. Q. Wei, R. Vajtai, and P. M. Ajayan. Applied Physics Letters 79, 1172 (2001).
[6] Jun Li, Qi Ye, Alan Cassell, Hou Tee Ng, Ramsey Stevens, Jie Han, and M. Meyyappan. Applied Physics Letters 82, 2491 (2003).
[7] Sunwoo Lee, Seongho Moon, Hong Sik Yoon, Xiaofeng Wang, Dong Woo Kim, In-Seok Yeo, U-In Chung, Joo-Tae Moon, and Jaegwan Chung. Applied Physics Letters 93, 182106 (2008).
[8] J. C. Coiffic, M. Fayolle, S. Maitrejean, L. E. F. Foa Torres, and H. Le Poche. Applied Physics Letters 91, 252107 (2007).
[9] Akinobu Kanda, Youiti Ootuka, Kazuhito Tsukagoshi and Yoshinobu Aoyagi. Applied Physics Letters 79, 1354 (2001).
[10] Chenguang Lu, Lei An, Qiang Fu, Jie Liu, Hong Zhang and James Murduck. Applied Physics Letters 88, 133501 (2006).
[11] Y. F. Hu, K. Yao, S. Wang, Z. Y. Zhang, X. L. Liang, Q. Chen, L. M. Peng, G. Yao, J. Zhang, W. W. Zhou, and Y. Li. Applied Physics Letters 90, 223116 (2007).
[12] Yosuke Nosho, Yutaka Ohno, Shigeru Kishimoto, and Takashi Mizutani. Applied Physics Letters 86, 073105 (2005).
[13] Yuki Matsuda, Wei-Qiao Deng, and William A. Goddard. J. Phys. Chem. C, 111, 11113-11116 (2007).
[14] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, and Ph. Avouris. Phys. Rev. Lett. 87, 256905 (2001).
[15] A. Bachtold, M. Henny, C. Terrier, C. Strunk, C. Schonenberger, J.-P. Salvetat, J.-M. Bonard, and L. Forro. Applied Physics Letters 73, 274 (1998).
[16] Derek W. Austin, Alex A. Puretzky, David B. Geohegan, Phillip F. Britt, Michael A. Guillorn, Michael L. Simpson. Chemical Physics Letters 361, 525–529 (2002).
[17] Cedric P. R. Dockendorf, Markus Steinlin, Dimos Poulikakos, Tae-Youl Choi. Applied Physics Letters 90, 193116 (2007).
[18] Daisuke Yokoyama, Takayuki Iwasaki, Tsuyoshi Yoshida, Hiroshi Kawarada, Shintaro Sato, Takashi Hyakushima, Mizuhisa Nihei, Yuji Awano. Applied Physics Letters 91, 263101 (2007).
[19] Quinton L. Williams, Xi Liu, Wilbur Walters, Jr., Jian-Ge Zhou, Tylvia Y. Edwards, Franchesca L. Smith, Gregory E. Williams, Brenitra L. Mosley. Applied Physics Letters 91, 143116 (2007).
[20] Pedro M. F. J. Costa, Dmitri Golberg, Masanori Mitome, Silke Hampel, Albrecht Leonhardt, Bernd Buchner, and Yoshio Bando. Nano Letters 8, 3120-3125 (2008).
[21] Yang Chai, Student Member, IEEE, Philip C. H. Chan, Fellow, IEEE, Yunyi Fu, Y. C. Chuang, and C. Y. Liu. IEEE Electron Device Lett 29, 1001 (2008).
[22] Roderick Jackson and Samuel Graham. Applied Physics Letters 94, 012109 (2009).
[23] Roderick Jackson and Samuel Graham. Applied Physics Letters 74, 3149 (1999).
[24] Roderick Jackson and Samuel Graham. Applied Physics Letters 90, 193104 (2007).
[25] http://elearning.stut.edu.tw/caster/3/index.htm
[26]Y. Abdi, J. Koohsorkhi, J. Derakhshandeh, S. Mohajerzadeh, H. Hoseinzadegan, M.D. Robertson, J.C. Bennett, X. Wu, H. Radamson. Materials Science and Engineering C 26, 1219-1223 (2006).
[27]A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. U nlu, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber and R. Saito, Physical Review B, 65, 155412 (2002).
[28]A Jorio, M A Pimenta, A G Souza Filho, R Saito, G Dresselhaus and M S Dresselhaus, New Journal of Physics 5, 139.1–139.17 (2003).
[29]Chang-Hee Cho, Baek-Hyun Kim, and Seong-Ju Park. Applied Physics Letters 89, 013116 (2006).
[30]K. C. Chan, P. F. Lee, and J. Y. Dai. Applied Physics Letters 92, 143117 (2008).
[31] T. W. Kim, S. O. Kang, D. C. Choo, and J. H. Shim. Applied Physics Letters 76, 1036 (2000).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊