跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 23:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃展輝
研究生(外文):Chan-Hui Huang
論文名稱:自組裝薄膜在生醫微流道表面力之應用研究
論文名稱(外文):A Study of Surface Force on Self-Assembled Monolayer of Bio-Microchannel
指導教授:洪政豪洪政豪引用關係
指導教授(外文):Jeng-Haur Horng
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:113
中文關鍵詞:微流道生醫晶片自組裝薄膜黏附力表面力
外文關鍵詞:microchannelbio-chipself-assembled monolayeradhesion forcesurface force
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
微小化一直是光電、半導體等高科技相關產業努力的目標,近幾年來在微製造與分子生物領域的快速發展,使得結合製程光電與生物科學的跨領域應用日議程,人類急待解決的醫學、能源等問題漸露曙光。其中微流道是生醫晶片、燃料電池、微電子熱傳等領域廣泛應用的一種結構,因此研究微流道中的流體流動現象將對產業的發展有相當助益。
對生醫微流道晶片要求而言,檢測液體的流動速率是一大影響關鍵,故本實驗之研究主軸為:1.增進檢體流動速率2.降低檢體與微流道表面間的黏著,使流至待測區之檢體量增多,提升其準確性,這也是當前生醫晶片急欲解決之問題。本論文使用有機矽烷類自組裝單分子膜HDT、ODT、OTS、ODS於生醫微流道晶片上,希望能提高檢體生醫微流道晶片上之流動性與準確性。實驗結果顯示,接觸角實驗中四種自組裝膜接觸角皆隨浸泡時間增加而增加,並以OTS薄膜在不同浸泡時間皆大於100°且在24小時呈現最佳性能,因此在疏水性與抗沾黏性為較佳,此原因從FTIR實驗中,發現四種自組裝膜的CH3鍵結吸收峰強度皆隨浸泡時間增加而增加,而CH3與疏水性有關,因此OTS的接觸角上升與CH3鍵結吸收峰強度提高是有關係的,且OTS薄膜也隨浸泡時間上升黏附力下降,在12小時到達最佳性能趨於穩定。傾斜角實驗中,因為傾斜角藉由一個重力的影響來模擬實際流體流動的推力,比接觸角更能說明流體的流動性好壞,且發現流動性能HDT>OTS>ODT>ODS,且發現與摩擦係數有相同趨勢。而在蛋白質濃度檢測發現,OTS、ODS與HDT黏著量都有下降又以OTS較為明顯,推測OTS自組裝膜可讓蛋白質黏著在表面數量下降,當應用於檢測時就可減少檢體吸附在微流道上,讓檢測準確性提高。為了進一步確認檢體實際流動狀況,利用螢光訊號測試CD-ELISA圓盤上流動狀態,實驗中發現以OTS與ODS電壓訊號值較高,顯見其檢測液體流至待測區含量較多所以螢光值升高,結果為OTS檢測出的檢體含量最佳。經驗證OTS24在各項儀器與螢光訊號試驗後,性能為組裝在生醫微流道晶片上最好,其結果能減少生醫微流道之黏附力,並增進生醫晶片檢測效果與準確性。
Microminiaturization has been a target of photoelectricity, semiconductor and other high-tech related industries. In recent years, the rapid development in the area of microfabrication and molecular biology has lead to the growth of interdisciplinarity application which combined production process of photoelectricity and biological sciences. This would render bright outlook for resolution of problems which need to be solved urgently. Microchannel is a design which can be comprehensively applied in the areas such as bio-chips, fuel cells, and microelectronic heat transmission. Therefore, research for the flowing phenomenon in the microchannel would be very much helpful for the development of industries.
As the flowing speed of specimen liquid is the prime factor for the requirement of bio-microchannel chips, therefore, the core components of this research are: 1. Accelerating flowing speed of specimens. 2. Lowering the adhesion between the specimens and the surfaces of microchannels to enable more volume of specimens flowing to the examination areas so as to increase accuracy. This is also deemed the first priority for bio-chips nowadays. In this paper, organic alkoxysilane Self-assembled monolayers such as HDT, ODT, OTS, and ODS were used for bio-microchannel chips, in order to increase flowing ability of specimens on the bio-microchannel chips and their accuracy. Results of contact angle experiments showed that contact angles of these 4 self-assembled layers increased with the advance of soaking times. Contact angles of OTS layers were all bigger than 100° in each soaking time. In 24 hours’ time especially, it presented the best function which suggested better hydrophobic property and anti-adhesion. The cause for the above could be found in the FTIR experiment where strength of absorbance peak of CH3 bonds increased with the advance of times in these 4 self-assembled layers. As CH3 was related with hydrophobic property, thus OTS’s increase in contact angle was also related with the strength increase of absorbance peak in CH3 bonds. Adhesion of OTS layers decreased with the advance of soaking time and achieved the best function and became stable in 12 hours. In the experiment of contact angles, single gravity was used to affect contact angles to simulate pushing power of actual flowing liquid. This had better illustrated flowing quality of liquid than contact angle. It was also found that HDT>OTS>ODT>ODS in flowing ability and friction coefficient had the same trend. In the examination of protein concentration, it was found that adhesion of OTS, ODS, and HDT lowered, especially OTS, assuming that OTS self-assembled layers could lowered the surface adhesion of protein. In this case, it can reduce adhesion of specimens on the microchannel and increase accuracy of examination. In order to go further in examining actual flowing of specimens, fluorescence signal was used to test the flowing condition on the CD-ELISA plate. It was found in the experiment that OTS and ODS had higher voltage signal values which apparently indicated that more specimen liquid had flowed to the examination areas and raised the fluorescence values. The result showed that the best specimen volume observed was OTS. After verification with various instruments and fluorescence signal tests, OTS24 presented the best function when self-assembled on bio-microchannels, as it did reduce adhesion force of bio-microchannels and enhanced its effect and accuracy.
摘要.................i
Abstract.............iii
目錄.................vi
表目錄...............viii
圖目錄...............ix
第一章 緒論................................1
1.1 前言....................................1
1.2 研究背景與動機..........................1
1.3 論文架構................................3
第二章 文獻回顧與理論基礎..................4
2.1 微流體系統簡介 ..........................4
2.1.1 微流道簡介............................5
2.2 生物晶片簡介............................6
2.3 自組裝單分子膜..........................7
2.4 自組裝薄膜的磨潤性能與機械性質..........9
2.5 表面能文獻回顧.........................12
2.6 黏附力與毛細力文獻回顧.................13
2.7 摩擦力文獻回顧 .........................15
2.8 多光束干涉術文獻回顧...................16
第三章 實驗設備與實驗流程.................24
3.1 實驗簡介...............................24
3.2 實驗製作程序...........................24
3.2.1 實驗材料與藥劑.......................25
3.2.2 實驗基材製備流程.....................25
3.2.3 自組裝薄膜製作.......................26
3.3 實驗設備...............................26
3.3.1 接觸角量測儀(Contact Angle Measurement)..26
3.3.2 原子力顯微鏡(Atomic Force Microscope)...28
3.3.3 奈米測試儀(Nano Test).........32
3.3.4 傅立葉紅外線光譜儀(FTIR)............33
3.3.5 場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscopy, FE-SEM).....................34
3.3.6 表面力分析儀(Surface Force Apparatus, SFA)........35
3.3.6.1 光源照射系統...........36
3.3.6.2 多光束干涉系統.................36
3.3.6.3 影像擷取系統..................37
3.3.6.4 雲母片基材製作..................37
3.3.6.5 干涉系統之製作...............38
3.3.6.6 干涉系統校正.................39
3.3.6. 7 影像處理.....................39
3.3.6. 8 FECO條紋影像水平方向畫素位置對應波長之解析度校正 .............40
3.3.7 生物性實驗.............42
3.3.7.1 蛋白質濃度測試............42
3.3.7.2 實驗步驟............43
3.3.8 螢光分析實驗..............44
第四章 實驗結果分析與討論............65
4.1 簡介...................65
4.2 自組裝薄膜接觸角、黏附力與表面成份特性分析...........65
4.3 自組裝薄膜粗糙度、傾斜角、摩擦分析..............69
4.4 自組裝薄膜刮痕分析........72
4.5自組裝薄膜於生物性蛋白質濃度分析.............73
4.6自組裝薄膜於螢光訊號強度分析................73
第五章 結論與未來展望..............97
5.1結論.................97
5.2 未來展望................98
參考文獻......................99
[1] L. Yu, Y. L. Juang, K. W. Koelling, and L. J. Lee, 2000, “Thin wall injection molding of thermoplastic microstructures,” SPE Tech. Papers,46,468.
[2] X. F. Peng and G. P. Peterson, 1996, “Convective Heat Transfer and Flow Friction for Water Flow in Micro channel Structures,” Int. J. Heat Mass Transfer,Vol. 39, No. 12, pp. 2599-2608.
[3] T.D. Boone, Z.H. Fan, H.H. Hopper, A.J. Ricco, H. Tan, S.J. Williams, “ Plastic Advances Microfluidic Devices,” Analytical Chemistry 2002, 74, 78A-86A.
[4] J.C McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A Schueller, G.M. Whitesides, 2000, “Fabrication of Microfludic Systems in Poly(dimethylsiloxane) ,” Electrophoresis 21, pp.27-40.
[5] Mark E.M., Krishna, M. R. K. and Michael, T., 1994, “Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane,” Langmuir 10, pp.3607-3614.
[6] M. Cuzin, June 2001, “DNA chips: a new tool for genetic analysis and diagnostics,” Transfusion Clinique, Volume 8, Issue 3, pp.291-296.
[7] David Gerhold, Thomas Rushmore, C. Thomas Caskey, 1 May 1999, “DNA chips: promising toys have become powerful tools,” Trends in Biochemical Sciences, Volume 24, Issue 5, pp. 168-173.
[8] D. J. Harrison, A. Manz, Z. H. Fan, H. Ludi, H. M. Widmer, A . Chem, 1992, 64, pp.1926–1932.
[9] 楊舜傑、黃明遠、林嘉柏,民91年,處理型生物晶片 (Lab-on-a-chip) 之介紹,電子月刊第八卷第五期.
[10] D. J. Graves, 1999, “Powerful Tools Genetic Analysis come of Age ,”Trends Biotechnol 17, pp.127-134.
[11] C. B. Epstein, R.A. Butow , 2000, “Microarray Technology-enchanced Versatility, Persistent Challenge ,” Current Option in Biotechnology 11, pp.36-41.
[12] G.H.W. Sanders, A. Maze ,2000, “Chip-based Microsystems for Genomic and Proteomic Analysis,” Trends in Analytic Chemistry 19,pp.364-378.
[13] N.H. Chiem, D.J. Harrison , 1998, “Microchip Systems for Immunoassay: an Integrated Immunoreactor with Electrophoretic Separation for Serum Theophylline Determination,” Climical Chemistry 44, pp.591-598.
[14] K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, T. Kitamori ,
2003, “Microchip-Based Chemical and Biochemical Analysis Systems,” Journal of Chromatography A 987, pp.197-204.
[15] Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, N. Kroutchinina, 2001, “Microfabricated Polycarbonate CE Devices for DNA Analysis,” Analytical Chemistry 73, pp.4196-4201.
[16] S.M. Ford, B. Kar, S. McWhorter, J. Davies, S.A. Soper, M. Klopf, G. Calderon, V. Saile, 1998, “Microcapillary Electrophoresis Devices Fabricated Using Polymeric Substrates and X-ray Lithography,” Journal of Microcolumn Separations 10, pp.413-422.
[17] T.D. Boone, Z.H. Fan, H.H. Hopper, A.J. Ricco, H. Tan, S.J. Williams, “ Plastic Advances Microfluidic Devices,” Analytical Chemistry 2002, 74, 78A-86A.
[18] J.C McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A Schueller, G.M. Whitesides, 2000, “Fabrication of Microfludic Systems in Poly(dimethylsiloxane) ,” Electrophoresis 21, pp.27-40.
[19] Mark E.M., Krishna, M. R. K. and Michael, T., 1994, “Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane,” Langmuir 10, pp.3607-3614.
[20] Bigelow W.C., Pickett D.L., Zisman W. A., 1946, “The Study of Reorganization of Self-Assembled Monolayers and Topochemical Photopolymerization ”, Collid Interface Sci. 1, 513.
[21] Sagiv J., J. Am. Chen. , 1980, “The Study of molecular orientation of oligothiophene films on various surfaces and the preparation of thin film transistors”, Soc. 102, 92.
[22] Nuzzo R. G.,. Allara, D. L., J. Am. Chen. , 1983, “The Synthesis of Acene Ethers and Sulfides and Application of Such Compounds in Constructing Self-Assembly Monolayer”, Soc. 105, 4481.
[23] Ulman A., 1991, “An Introduction to Ultrathin Organic Films From Langmuir-Blodgett to Self-Assembly”.Academic Press.
[24] David L. A., 1995, “Critical issues in application of Aelf-Assemble Monolayers, ” Biosensors and Bioelectronics 10, pp.771-783.
[25]Brarat Bhushan, Toshi Kasai, Gerit, Kulik, Laura Barbieri, Patril Hoffmann, 2005, “AFM study of perfluoroalkylsilane and alkylsilane self-assembled monlayers for anti-stiction in MEMS/NEMS”, Ultramicroscopy, Vol.105, 176-188.
[26] Nikhil S Tambe, Bharat Bhushan, 2005, “Friction model for the velocity dependence of nanoscale friction”, Nanotechnology, pp.2309-2324.
[27] McDermott M. T., Green J. D., Porter M. D., 1997, “Scanning Froce Microscopic Exploration of the Lubrication Capabilities of n-Alkanethiolate Monolayers Chemisorbed at Gold: Structural Basis of Microscopic Friction and Wear”, Langmuir, Vol. 13, pp. 2504-2510.
[28] Lio A., Charych D. H., Salmeron M., 1997, “Comparative Atomic Force Microscopy Study of the Chain Length Dependence of Frictional Properties of Alkanethiol on Gold and Alkylsilanes on Mica”, J. Phys. Chem. B, Vol. 101, pp. 3800-3805.
[29]Derjaguin, B. V., Muller, V. M., and Toporov, Y. P., 1975, “Effect of Conact Deformation on the Adhesion of Elastic Solids,” J. Colloidal Interface Sci., Vol.53, pp.314-326.
[30] E. A. Hauser, H. E. Edgerton, and W.B. Tucker, 1936, “The Application of The High-Speed Motion Picture Camera to the Research on the Surface Tension of Liquid,” J. Phys Chem, Vol.40, p.973.
[31] H. E. Edgerton, E. A. Hauser, and W.B. Tucker, 1937,”Studies in Drop Formation as Revealed by the High-Speed Motion Camera,” J. Phys Chem, Vol.41, p.1017.
[32] D. H. Peregrine, G. Shoker, and A. symon, 1990, “The Bifurcatin of Liquid Bridgess,” J. Fluid Mech, Vol.212, p.25.
[33] D. Y. Kwok, Ph. D. Thesis, 1998, “Contact Angle and Surface Energetics,” University of Toronto, Canada.
[34] 簡儒文, 2002, “雙液滴撞擊液膜與界面張力之實驗初探,” 國立台灣大學應用力學研究所碩士論文。
[35] M. G. Cabezas, A. Bateni, J. M. Montanero, and A. W. Neumann, 2005, “A New Method of Image Processing in The Analysis of Axisymmetric Drop Shapes,” Colloids and Syrfoce A: Physicochem, Vol.255, pp.31-48.
[36] D. H. Peregrine, G. Shoker, and A. symon, 1990, “The Bifurcatin of Liquid Bridgess,” J. Fluid Mech, Vol.212, p.25.
[37] C. N. C. Lam, R. Wu, D. Li, M. L. Hair, and A. W. Neumann, 2002, ”Study of The Advancing and Receding Contact Angles:Liquid Sorption as a cause of Contact Angle Hysteresis,” Advances in Colloid and Interface Science, pp.169-191.
[38] D. Y. Kwok, R. Lin. M. Mui, and A. W. Neumann, 1996, “Low-Rate Dynamic and Static Contact Angles and The Determination of Solid Surface Tensions,” Physicochemical and Engineering Aspects, pp.63-77.
[39] Yves F. Dufrêne, Gil U Lee, 2000, “Advances in the characterization of supported lipid films with the atomic force microscope Biochimica et Biophysica Acta (BBA) - Biomembranes,”Volume 1509, Issues 1-2, 20 December Pages 14-41
[40] J. H. Horng, J. S. Lee and D. C. Du, 2006, “Three-Body Microcontact Model of Rough Surfaces and Its Application on Polishing of Wafer,” Material Science Forum, pp.507-513 . (SCI).
[41] Biggs, S., and Spinks, G., 1998, “Atomic Force Microscopy Investigation of the Adhesion between a Single Polymer Sphere and a Flat Surface,” J.Adhes. Sci. Technol., Vol.12, No.5, pp.461-478.
[42] Reitsma, M., Craig, V., and Biggs S., 2000, “Elasto-Plastic and Visco-Elastic Deformations of a Polymer Sphere Measured using Colloid Probe and Scanning Electron Microscopy,” J. Adhe. Adhes., Vol.20, No.6, pp.445-448.
[43] Carpick R. W., and M. Salmeron, 1997, Chem. Rev. 97, “Molecular dynamics study of dynamic contact and separation between tip and disk surface”, pp.1163.
[44] Derjaguin, B. V., Muller, V. M., and Toporov, Y. P., 1975, “Effect of Conact Deformation on the Adhesion of Elastic Solids,” J. Colloidal Interface Sci., Vol.53, pp.314-326.
[45] Johnson, K. J., Kendall, K., and Roberts, A. D., 1971, “Surface Energy and the Contact of Elastic Solids,” Proc. R. Soc. Lond., A324, pp.301-313.
[46] Tabor, D., 1977, “Surface Forces and Surface Interactions,” J. Colloidal Interface Sci., Vol.538, pp.2-13.
[47] Muller, V. M., Yushchenko, V. S., and Derjaguin, B. V., 1980, “On the influence of Molecular Forces on the Deformation of an Elastic Sphere and its Sticking to Rigid Plane,” J. Colloidal Interface Sci., Vol.77, pp.91-101.
[48] Chang, W. R., Etsion, I., and Bogy, D. B., 1988, “Adhesion Model for Metallic Rough Surfaces,” ASME Journal of Tribology, Vol. 110, pp.50-56.
[49] Maugis, D., 1996, “On the Contact and Adhesion of Rough Surfaces,” J. Adhesion Sci., and Tech., Vol.10, pp.161-175.
[50] Aral, F., Ando, D., and Fukuda, T. 1996, “Adhesion Force Reduction for Micro Manipulation Base o n Micro Physic,” Proc, IEEE/RJS Int. Conf. On Intelligent Robotics and Systems, pp. 354-359.
[51] Sahoo, P., and Roy Chowdhury, S. K., 2000, “A fractal analysis of Adhesion Friction between Rough Solids in Gentle Sliding,” Poc. Instn. Mech. Engrs., Vol.214, Part J, pp.583-594.
[52] Sahoo, P., and Roy Chowdhury, S. K., 2002, “A fractal analysis of Adhesive Wear at the Contact between Rough Solids,” Wear, Vol. 253, pp.924-934.
[53] Marmur, A., 1993, ‘‘Tip-Surface Capillary Interactions,’’ Langmuir, Vol.9, No.7, pp.1922-1926.
[54] De Lazzer, A., Dreyer, M., and Rath, H. J., 1999, ‘‘Particle-Surface Capillary Forces,’’ Langmuir, Vol.15, No.13, pp.4551-4559.
[55] Quon, R. A., Ulman, A., and Vanderlick, T. K., 2000, ‘‘Impact of Humidity on Adhesion Between Rough Surfaces,’’ Langmuir, Vol. 16, No.23, pp.8912-8916.
[56] Rabinovich, Y. I., Adler, J. J., Esayanur, M. S., Ata, A., Singh, R. K. and Moudgil, B. M., 2002, “Capillary forces between surfaces with nanoscale roughness,” Advances in Colloid and Interface Science, Vol.96, No.1-3, pp.213-230.
[57] E. Meyer, R. M. Overney, K. Dransfeld, and T. Gyalog, 1998, “Nanoscience: Friction and Rheology on the Nanometer Scale,” Singapore: World Scientific
[58] R. W. Carpick and M. Sa;meron, Chem. Rew, 97, 1163 1997.
[59] J. N. Israelachvili, P.M. McGuiggan, and A. M. Homola, 1988 , “Dynamic Properties of Molecularly Thin Liquid Films,” Science, 240, p.189.
[60] J. Krim, D. H. Solina, and R. Chiarello, 1991 , “Microbalance Study of Atomic-Scale Friction,” Phys. Rev. Lett., 66, p.181.
[61] G. Binnig, C. F. Quate, and C. Gerber, 1986, “ Atomic Force Microscope,” Phys. Rev.Lett., 56, p.930.
[62] 林鶴南,李龍正,劉克迅, 1995, “科儀新知”, 17(3), p.29.
[63] G. Meyer and N.M. Amer, 1990, “Simultaneous measurement of lateral and normal forces atomic force microscope ,” Appl. Phys. Lett. Vol.57, pp.2089-2097.
[64] E. Liu, B. Blanpain, and J. P. Celis, “Calibration procedures for frictional measurements with a lateral force microscope,” Wear, vol. 192, pp. 141–150.
[65] S. Grafstrom, M. Neitzert, T. Hagen, J. Ackermann, R. Neumann, O. Probst, and M. Wortge, 1993, “Nanotecnology”, 4, p.143.
[66] Tolansky, S., 1960, “An introduction to interferometry,” London: Longmans, p.174.
[67] Heavens, OS., 1965 , “Optical properties of thin films, ” New York: Dover, p.111.
[68] Malacara, D. , 1992, “Optical shop testing ”, New York; Wiley, p.222.
[69] Tabor, D. and Winterton, R. H, “Surface forces: direct measurement of normal and retarded van der Waals forces, 1969, ” Proc. R. SOC. A 312, 435.
[70] Levins, J. M., and Vanderlick, T.K., 1993, “ Impact of Roughness of Reflective Films on the Application of Multiple Beam Interferometry, ” J. Colloid Interface Sci., 158, pp.223-227.
[71] Levins, J. M., and Vanderlick, T.K. , 1994, “Extended Spectral Analysis of Multiple Beam Interferometry: A technique to studt metallic filme in Surface Force Apparatus, ”Langmuir, 10, pp.2389-2394.
[72] Horn, R. G., Smith, D. T., and Haller, 1989, W. , “Surface Forces and Viscosity of water measured between silica sheets, ”Chem. Phys. Lett., 162, pp. 404-407.
[73] 胡世國,2006.,“發展多光束干涉儀於薄膜厚度與折射率之量測 ”.
[74]郭昭輝,謝國煌,2003,‘‘自組裝薄膜技術之發展’’,化工技術第11卷第3期,pp216-223
[75]Quon, R. A., Ulman, A. and Vanderlick, T. K., 2000, ‘‘Impact of Humidity on Adhesion Between Rough Surfaces,’’ Langmuir, Vol. 16, No. 23, pp. 8912-8916.
[76] Peter Frantz, Miquel Salmeron, 1998, “reparation of mica surfaces for enhanced resolution and cleanliness in the surface apparatus,“ Tribology Letters 5,pp.151-153.
[77] Mika M. Kohonen, Fiona C. Meldrum, 2003, “articles on Melt-Cut Mica Sheets Are Platinum,” Langmuir,19,pp.975-976 .
[78] Zhiqun Lin,Steve Granick, 2003, “latinum Nanoparticles at Mica Surfaces,” Langmuir,19,pp.7061-7070.
[79] Kudelski A., 2003, “Structures of monolayers formed from different HS-(CH2)2-X thiols on gold, silver and copper:comparative studies by surface-enhanced Raman scattering,” J. Raman Spectrose., 34, pp.853-862.
[80] Bhushan B., in: Bhushan(Ed.) B., 2001, Modern Tribology Handbook, Materials, Coatings, and Industrial Applications, Vol. 2, CRC, Boca Raton, FL, P. pp.909.
[81] O.P. Khatri, S.K. Biswas, 2006, “Boundary lubrication capabilities of alkylsilane monolayer self-assembled on aluminium as investigated using FTIR spectroscopy and nanotribometry,” Surface Science, Volume 600, Issue 18, 15 September, pp.4399-4404.
[82]Vallant, T., 1998, “Formation of Self-Assembled Octadecylsiloxane Monolayers on Mica and Silicon Surfaces Studied by Atomic Force Microscopy and Infrared Spectroscopy”, J. Phys. Chem. B. 102, pp.7190-7197.
[83] 審議:林敬二,林宗義, 1994, 儀器分析第四版,上,174-193
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top