跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 10:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋紹瑩
研究生(外文):Shau-Ying Sung
論文名稱:直齒圓柱齒輪之熱間抽擠複合成形製程研究
論文名稱(外文):A Study of Hot Drawing-Extrusion Compound Forming for the Spur Gears
指導教授:許源泉許源泉引用關係
指導教授(外文):Yuan-Chuan Hsu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:181
中文關鍵詞:抽擠複合成形擠壓抽拉正齒輪有限元素分析
外文關鍵詞:Drawing-extrusion formingDrawingExtrusionSpur gearFinite element analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要在探討利用抽擠複合成形技術來進行齒輪熱間塑性成形的可行性,並探討此技術各製程參數對齒輪成形的影響。亦即首先採用三維有限元素模擬技術分析擠壓、抽拉及抽擠複合成形等三種方法在正齒輪塑性成形的差異,亦即冀望從瞭解金屬在抽擠過程中的變形流動、齒型充填、材料利用、應力與應變分佈及模具受力等特徵,探討以抽擠複合法進行正齒輪塑性成形的可行性。其後,對抽擠複合成形再進一部分析,探討沖頭壓力、抽拉速度及摩擦因子等製程參數對胚料充填變形、凹模受力及齒輪成形品質的影響。

研究發現,雖然抽擠複合塑性成形方法,其凹模受力並無顯著降低,但於齒型充填中,抽擠複合塑性成形比擠壓成形及抽拉成形效果佳且穩定,亦降低了齒輪齒型充填不滿缺陷之虞,而胚料料頭的廢料亦較少,相對的增加了材料的使用率。此外,抽擠複合塑性成形正齒輪件的應力較低,降低了破裂風險,又齒輪應變強化亦均勻分佈在齒型四周,有助於輪齒強化效能。總之,以抽擠複合塑性成形方法來製造正齒輪具有其可行性,塑性成形後亦可達到預期的效果。

抽擠複合成形參數對塑性變形、凹模受力及齒輪的應力與應變則有不同程度的影響。當冲頭壓力越大其齒形充填效果越好,但相對的凹模受力也越大。又不同抽拉速度及模擦因子的大小對其凹模受力影響則並無顯著差別。此外,當冲頭壓力越大齒輪件齒面之應變強化亦均勻分佈在齒型四周,有助於輪齒強化效能。抽拉速度越大時其齒輪件的應力在齒面較高,增加了破裂風險。
This research aimed to explore the feasibility of hot plastic forming for spur gear through the drawing-extrusion forming technique, and the effects of the forming parameters on the gears. It firstly employed 3D finite element simulation technique to analyze the forming differences in spur gear through extrusion, drawing, and drawing-extrusion. Specifically, such characteristics as plastic flow of workpiece, filling of die cavity, yield of material, distribution of stress and strain, and load of die were investigated to further understand the feasibility of hot plastic forming for spur gear through the drawing-extrusion forming technique. Then, analysis was made on the effects of the forming parameters—the punch pressure, drawing speed, and fraction factor, on the filling deformation of billet, die load, and the quality of the gear.

Results showed that the load on the forming die did not reduce in drawing-extrusion forming, but the filling of die cavity was most effective and stable as compared with extrusion and drawing operations. Filling defect at the die entrance was greatly reduced and hence the yield of production increased. In addition, the forming stress of drawing-extrusion was smaller, which reduced the risk of die fracture. Significant strain appeared on the peripheral of the tooth, which contributed to strengthening the workpiece. Therefore, drawing-extrusion forming technique exhibited more advantages in its feasibility analysis. The desired functionality of the product could be also achieved through plastic forming.

It was found that the plastic deformation, load of die, and the stress and strain of gear workpiece were respectively influenced by the forming parameters of drawing-extrusion forming. The higher the punch force was, the better the filling effect of gear profile was; but the load of die server was relatively higher. In addition, the load of die was not influenced by drawing velocity and friction factor. Furthermore, the strength performance of formed gears would improve, owing to the strengthened effect of the strain being distributed around the teeth of gear. However, the higher the drawing velocity was, the higher the stress in the teeth surface of gear was, which in turn increased the fracture risk of formed gears.
摘要................................i
ABSTRACT............................iii
誌謝................................v
目錄................................vi
表目錄..............................xi
圖目錄..............................xii
符號說明............................xviii
第一章 緒論........................1
1.1 前言 ...........................1
1.2 研究動機.......................10
1.3 研究目的.......................13
1.4 研究方法.......................14
1.5 文獻回顧.......................19
1.5.1 齒輪擠壓製程.................19
1.5.2 齒輪抽拉製程.................25
1.5.3 複合塑性成形.................29
1.6 論文總覽.......................31
第二章 抽擠原理與製程..............32
2.1 前言 ...........................32
2.2 擠壓製程.......................34
2.2.1 擠壓原理.....................35
2.2.2 擠壓製程分析.................39
2.3 抽拉製程.......................45
2.3.1 抽拉原理.....................46
2.3.2 抽拉製程分析.................50
第三章 研究方法....................54
3.1 圓柱壓縮試驗...................54
3.1.1 實驗原理.....................55
3.1.2 實驗步驟及數據整理...........55
3.2 圓環壓縮試驗...................60
3.2.1 實驗原理.....................60
3.2.2 實驗步驟及數據整理...........64
3.3 有限元素分析模擬...............67
3.3.1 有限元素法於金屬塑性成形.....69
3.3.2 DEFORM軟體之簡介.............81
3.3.3 抽擠製程模擬規劃.............89
3.4 模具製作及擠壓實驗.............94
3.4.1 模具設計與製作...............94
3.4.2 抽擠實驗.....................97
第四章 結果與討論 ..................106
4.1 抽擠複合成形可行性分析 .........106
4.1.1 材料流動變形分析比較 .........106
4.1.2 齒型充填狀況分析比較 .........108
4.1.3 胚料利用分析比較..............111
4.1.4 齒輪件等效應變分析比較........114
4.1.5 齒輪件等效應力比較分析........116
4.1.6 凹模受力影響分析比較 ..........120
4.1.7 模擬與實驗比較................121
4.1.8 綜合比較分析..................123
4.2 抽擠複合製程之胚料變形分析......125
4.2.1 冲頭壓力的影響分析............125
4.2.2 抽拉速度的影響分析............127
4.2.3 模具溫度分析..................131
4.3 抽擠複合成形之模具受力分析......140
4.3.1 冲頭壓力的影響分析............140
4.3.2 摩擦因子的影響分析............141
4.3.3 抽拉速度的影響分析............143
4.4 抽擠複合成形之齒輪件品質分析....145
4.4.1 等效應變分析..................145
4.4.2 等效應力分析..................150
4.4.3 延性破裂指數分析..............153
第五章 結論與建議....................156
5.1結論..............................156
5.2建議..............................157
參考文獻.............................158
附錄C-擠壓實驗模具圖.................171
英文大綱摘要.........................177
[1]寇淑清,楊慎華等,直齒圓柱齒輪淨形成形技術研究,熱加工工藝,No.5,1999:29∼31。
[2]寇淑清,三維複雜鍛造過程數值模擬及直齒輪冷精鍛成形研究,吉林工業大學博士論文,1998 :76∼91。
[3]劉慶斌,孫勝等,直齒輪成形數值類比及試驗研究,金屬成形工藝,Vo1.13,No.1, 1998,34∼38
[4]鄭江,張保全,桂志國。現代齒輪技術的發展與我國齒輪製造面臨的問題。華北工學院學報,1997,18(1):50-53。
[5]Samanta , Apparatus and Method for Cold Extrusion of Gear , Ford Motor Co. Patent . No.3910091 October 7, 1982.
[6]藤川真一郎.3 次元鍛造- 課題與展望.塑性加工.1999。
[7]S.Kobayashi, S.I.Oh and T.Altan, Metal Forming and the Finite Element Method, New York,Oxford University Press, 1989 No.5.
[8]彭穎紅.金屬塑性成形仿真技術.上海交通大學出版社.1999.P3-4,71。
[9]Wagner, Fritz, Spezizlist fure die Kaltmassivumforung, Umformtechnik, , NO.2,2001.
[10]寇淑清等。高精度直齒圓柱齒輪冷鍛成形加工方法的研究。鍛壓技術。2000年。第5期。10-13。
[11]安藤弘行.鍛造部件0)高精度化一第5回中日精密鍛造論文集,1996,12:52-55。
[12]安藤弘行.冷溫間鍛造零件的高精度化鑄鍛造.熱處理舊)1989,8:11-16。
[13]Kazuyoshi Kondo.精密冷模鍛新工藝的開發見:世界塑性加工最新技術(譯文集).北京:機械工業出版社,1987,12:701-709。
[14]S. kobayashi, S. Oh, and T. Altan, Metal forming and the finite-element method, Oxford University Press, 1989.
[15]Choi J C. A Study on the forging of spur gears. Int.J. Mech. Sci.,1996,38(12):1333-1347.
[16]Chitkara N R. Near-Net shape forging of spur gear forms: An analysis and some experiments.Int.J.Mech.Sci.,1996,38(8-9): 891-916.
[17]李洪波.圓柱直齒輪精鍛成形的UBET 數值模擬.金屬成形工藝1996, 14(3) 21-23。
[18]程軍.塑性加工工步的光塑性分析與圖像處理.[博士學位論文],南昌大學,1998。
[19]陳澤中.直齒圓柱齒輪精鍛工步分析與實驗研究.[碩士學位論文],南昌大學,1998。
[20]Vazquez, V ., Walterss , J., Altan T. Forging Process Simulation - State of the Art in USA , Neuere Entwicklungen in der Massivumformung(體積成形最新研究進展) in Fellbach bei Stuttgart ,am 19 und 20. Mai 1999.
[21]林治平,陶澤球,用實心坯料冲擠精鍛直齒圓柱齒輪的電腦模擬,塑性工程學報,V.7,No.1, 2000.3。
[22]劉慶斌,直齒輪擠壓成形數值模擬及實驗研究,山東工業大學碩士學位論文,1994
[23]陳拂曉等,直齒輪徑向擠壓過程變形力規律的數值模擬,洛陽工學院學報,Vol.19,No.1.1998。
[24]楊慎華,傅沛福,黃良駒,王玉國,直齒圓柱齒輪冷精鍛上限模型的建立與分析,1999年吉林工業大學自然科學學報Vo1.29 第4 期。
[25]N. R. Chitkara, M. A. Bhutta, Forging and heading of hollow spur gear forms: ananalysis and some experiments. International Journal of Mechanical Sciences, 1999.41,1159-1189.
[26]Jongung Choi, Hae-Yong Cho, Chang-Yong Jo, An upper-bound analysis for the forging of spur gears, Journal of Materials Processing Technology 104(2000), 67-73.
[27]Jongung Choi, Hae-Yong Cho, Chang-Yong Jo, Forging of spur with internal serrations and design of the dies, Journal of Materials Processing Technology 2000.104,1-7.
[28]田福祥,林化春,孟凡利,孫錦章.直齒圓柱齒輪熱精鍛—冷推擠精密成形研究.鍛壓機械.1997(6):26∼28。
[29]張治民.直齒圓柱齒輪滲碳—溫擠壓成形技術幾個基本問題的研究. 博士論文.燕山大學:2002.10.01。
[30]Ales Mihelic, Boris Stok. Tool design optimization extrusion process. Computers and Structures,1998,68(7):283~293.
[31]王英、夏巨諶等。汽門溫熱擠壓模具的優化設計,鍛壓技術,1998,No.1:59~61。
[32]M. Richerr, H. P. Stuwe. Work hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression, Materials Science and Engineering 2003,355(8):180~185.
[33]S. K. Lee, D. C. Ko, B. M. Kim. Optimal die profile design for uniform microstructure in hot extrusion product. International Journal of Machine tools &Manufacture,2000,40(8):1457~1478.
[34]N. H. Kim, C. G. Kang and B. M. Kim. Die design optimization for axisymmetric hot extrusion of metal matrix composites .International Journal of Mechanical Science,2002,43(6):1507~1520.
[35]H. H. Jo, S. K. Lee, D. C. Ko and B. M. Kim. A study on the optimal tool shape design in a hot forming process . Journal of Materials Processing Technology,2001,111(4):127~131.
[36]P. Aramadhu Balaji, T. Sundarrajian and G. K. Lai. Visco-plastic Deformation Analysis and Extrusion Die Design by FEM. Transactions of the ASME,1991,58:1859~1901.
[37]鄒琳、夏巨諶、胡國安。擠壓模具型腔輪廓曲線優化擬合分析。鍛壓技術,2002,No.6:51~54。
[38]劉漢武,張志萍等。基於BP遺傳演算法的鋁型材擠壓模具優化設計。哈爾濱工業大學學報,2000,32(4):86~88。
[39]齊紅元、杜鳳山等。金屬鋁型材擠壓模參數的優化。模具工業,2000(4):33~36。
[40]G. A. Lee, Y. T. Im, Finite-element investigation of the wear and elastic deformation of dies in metal forming ,Journal of Materials Processing Technology, 89-90, pp.123-127, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top